Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications > Radar
This book presents the fundamentals of polarimetric radar remote sensing through understanding wave scattering and propagation in geophysical media filled with hydrometers and other objects. The text characterizes the physical, statistical, and electromagnetic properties of hydrometers and establishes the relations between radar observables and physical state parameters. It introduces advanced remote sensing techniques (such as polarimetric phased array radar) and retrieval methods for physical parameters. The book also illustrates applications of polarimetric radar measurements in hydrometer classification, particle size distribution retrievals, microphysical parameterization, and weather quantification and forecast.
An up-to-date analysis of the SAR wavefront reconstruction signal theory and its digital implementation With the advent of fast computing and digital information processing techniques, synthetic aperture radar (SAR) technology has become both more powerful and more accurate. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms addresses these recent developments, providing a complete, up-to-date analysis of SAR and its associated digital signal processing algorithms. This book introduces the wavefront reconstruction signal theory that underlies the best SAR imaging methods and provides clear guidelines to system design, implementation, and applications in diverse areas—from airborne reconnaissance to topographic imaging of ocean floors to surveillance and air traffic control to medical imaging techniques, and numerous others. Enabling professionals in radar signal and image processing to use synthetic aperture technology to its fullest potential, this work:
Expanding the range of antenna frequency is the main objective of this book. Solutions proposed are based on the development of new theoretical methods for analyzing and synthesizing antennas. The book shows that concentrated capacitive loads connected along linear and V-antennas provide a high level of matching with a cable over a wide frequency range and improves directional characteristics of antennas, i.e. increases the communication distance. New theoretical methods are proposed for analysis and synthesis of antennas under consideration: 1) method of calculating directional characteristics of radiators with a given current distribution, and 2) method of electrostatic analogy for calculating mutual and total fields of complex multi-element radiating structures. These methods allow us to obtain optimal directional characteristics for director-type antennas (arrays of Yagi-Uda) and log-periodic antennas with concentrated capacitances and show that use of capacitors makes it possible to extend the frequency range of the director antennas and to decrease dimensions of the log-periodic antennas Multi-element (flat and three-dimensional) self-complementary antennas with different variants of connecting generator poles and cable wires to antenna elements are proposed, which improves the matching with a cable. Characteristics of flat structures are compared with characteristics of volume structures: conical, parabolic, and located on a pyramid edges. The book describes new versions of transparent antennas, antennas for cellular communication, multi-tier and multi-radiator antennas, and much more.
A comprehensive introduction to radar principles This volume fills a need in industry and universities for a comprehensive introductory text on radar principles. Well-organized and pedagogically driven, this book focuses on basic and optimum methods of realizing radar operations, covers modern applications, and provides a detailed, sophisticated mathematical treatment. Author Peyton Z. Peebles, Jr., draws on an extensive review of existing radar literature to present a selection of the most fundamental topics. He clearly explains general principles, such as wave propagation and signal theory, before advancing to more complex topics involving aspects of measurement and tracking. The last chapter provides a self-contained treatment of digital signal processing, which can be explored independently. Ample teaching and self-study help is incorporated throughout, including:
Radar Principles is destined to become the standard text on radar for graduate and senior-level courses in electrical engineering departments as well as industrial courses. It is also an excellent reference for engineers who are typically required to learn radar principles on the job, and for anyone working in radar-related industries as well as in aerospace and naval research.
A unique, easy-to-use guide to radar tracking and Kalman filtering This book presents the first truly accessible treatment of radar tracking; Kalman, Swerling, and Bayes filters for linear and nonlinear ballistic and satellite tracking systems; and the voltage-processing methods (Givens, Householder, and Gram-Schmidt) for least-squares filtering to correct for computer round-off errors. Tracking and Kalman Filtering Made Easy emphasizes the physical and geometric aspects of radar filters as well as the beauty and simplicity of their mathematics. An abundance of design equations, procedures, and curves allows readers to design tracking filters quickly and test their performance using only a pocket calculator! The text incorporates problems and solutions, figures and photographs, and astonishingly simple derivations for various filters. It tackles problems involving clutter returns, redundant target detections, inconsistent data, track-start and track-drop rules, data association, matched filtering, tracking with chirp waveform, and more. The book also covers useful techniques such as the moving target detector (MTD) clutter rejection technique. All explanations are given in clear and simple terms, including:
Tracking and Kalman Filtering Made Easy is invaluable for engineers, scientists, and mathematicians involved in tracking filter design. Its straightforward approach makes it an excellent textbook for senior-undergraduate and first-year graduate courses.
Introduction to Radar Analysis, Second Edition is a major revision of the popular textbook. It is written within the context of communication theory as well as the theory of signals and noise. By emphasizing principles and fundamentals, the textbook serves as a vital source for students and engineers. Part I bridges the gap between communication, signal analysis, and radar. Topics include modulation techniques and associated Continuous Wave (CW) and pulsed radar systems. Part II is devoted to radar signal processing and pulse compression techniques. Part III presents special topics in radar systems including radar detection, radar clutter, target tracking, phased arrays, and Synthetic Aperture Radar (SAR). Many new exercise are included and the author provides comprehensive easy-to-follow mathematical derivations of all key equations and formulas. The author has worked extensively for the U.S. Army, the U.S. Space and Missile Command, and other military agencies. This is not just a textbook for senior level and graduates students, but a valuable tool for practicing radar engineers. Features Authored by a leading industry radar professional. Comprehensive up-to-date coverage of radar systems analysis issues. Easy to follow mathematical derivations of all equations and formulas Numerous graphical plots and table format outputs. One part of the book is dedicated to radar waveforms and radar signal processing.
A self-contained approach to DSP techniques and applications in
radar imaging * DSP principles and signal characteristics in both analog and
digital domains, advanced signal sampling, and interpolation
techniques The book fully utilizes the computing and graphical capability
of MATLAB? to display the signals at various processing stages in
3D and/or cross-sectional views. Additionally, the text is
complemented with flowcharts and system block diagrams to aid in
readers' comprehension.
Radar networks are increasingly regarded as an efficient approach to enhancing radar capabilities in the face of popular anti-radar techniques and hostile operating environments. Reader-friendly and self-contained, this book provides a comprehensive overview of the latest radar networking technologies. The text addresses basic, relevant aspects of radar signal processing and statistical theories, including both civilian and military radar applications. It also discusses emerging topics that directly relate to networks, such as multiple-input-multiple-output (MIMO) radars, waveform design, and diversity via multiple transmitters. Other topics covered include target recognition and imaging using radar networks. Features Gives a comprehensive view of the latest radar network technologies Covers both civilian and military applications of radar Provides basic statistics and signal processing necessary for understanding radar networks Includes up-to-date information on MIMO radars Presents waveform design and diversity for radar networks with multiple transmitters
Completely modernized, greatly expanded, but retaining all the magic of the 2nd edition, Introduction to Airborne Radar has been brought into the 21st century without losing the hallmarks that made George Stimson's previous editions unique. Every chapter has been updated to reflect the constant transformations in radar technology and end-of-chapter exercises have also been added, improving its employment as a textbook. Over 100 radar and EW experts from around the world were involved in reviewing, writing, and editing this book, each one a longtime user of the previous editions. Each one of them was tasked with making sure this third edition lives up to its legacy of 'Introduction.' Stimson's is written specifically as an overview without going overboard on the math. Virtually anyone with a knowledge of high school algebra, trigonometry, and physics will be able to read and absorb the vast majority of the material. The first 17 chapters provide fundamentals that can be used by air, ground, and sea-based personnel. Every chapter provides extensive fundamental materials and practical applications, using visual system exemplars to aid explanations. The unique full color layout is enhanced with an immense number of illustrations, figures, tables, and color photographs. Key features: Modernized to reflect changes in the past 20 years including electronic scanning antennas and high resolution imaging. Completely covers the wide range of techniques employed in modern airborne and space borne radars. Fundamentals are applicable to ground and sea-based radar. Clear, understandable writing supplemented by extensive graphic illustration of concepts and offset boxes taking those concepts to the next level. Community reviewed by over 100 radar experts from organizations worldwide.
Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications. * Explains pros and cons of different Doppler radar architectures, including CW, FMCW, and pulsed Doppler radar * Discusses nonlinear demodulation methods, explaining dc offset, dc information, center tracking, and demodulation enabled by dc cancellation * Reviews advanced system architectures that address issues of dc offset, spectrum folding, motion interference, and range resolution * Covers Doppler radar physiological measurements demonstrated to date, from basic cardiopulmonary rate extractions to more involved volume assessments Doppler Radar Physiological Sensing serves as a fundamental reference for radar, biomedical, and microwave engineers as well as healthcare professionals interested in remote physiological monitoring methods. Olga Boric-Lubecke, PhD, is a Professor of Electrical Engineering at the University of Hawaii at Manoa, and an IEEE Fellow. She is widely recognized as a pioneer and leader in microwave radar technologies for non-contact cardiopulmonary monitoring, and in the design of integrated circuits for biomedical applications. Victor M. Lubecke, PhD, is a Professor of Electrical Engineering at the University of Hawaii at Manoa. He is an emeritus IEEE Distinguished Microwave Lecturer and has over 25 years of experience in research and development of devices and methods for radio-based remote sensing systems. Amy Droitcour, PhD, has spent ten years developing radar-based vital signs measurement technology through her dissertation research and leading product development as CTO of Kai Medical. She currently serves as Senior Vice President of R&D at Wave 80 Biosciences. Byung-Kwon-Park, PhD, is a senior research engineer at the Mechatronics R&D Center in Korea. Aditya Singh, PhD, is currently a postdoctoral researcher at the University of Hawaii Neuroscience and MRI research Program.
This book provides a comprehensive and systematic framework for the design of adaptive architectures, which take advantage of the available a priori information to enhance the detection performance. Moreover, this framework also provides guidelines to develop decision schemes capable of estimating the target position within the range bin. To this end, the readers are driven step-by-step towards those aspects that have to be accounted for at the design stage, starting from the exploitation of system and/or environment information up to the use of target energy leakage (energy spillover), which allows inferring on the target position within the range cell under test.In addition to design issues, this book presents an extensive number of illustrative examples based upon both simulated and real-recorded data. Moreover, the performance analysis is enriched by considerations about the trade-off between performances and computational requirements.Finally, this book could be a valuable resource for PhD students, researchers, professors, and, more generally, engineers working on statistical signal processing and its applications to radar systems.
This book is dedicated to studying the ocean with radar tools, in
particular, with space radars. Being intended mainly for the
scientists preoccupied with the problem (as well as senior course
students), it concentrates and generalizes the knowledge scattered
over specialized journals. The significant part of the book
contains the results obtained by the author.
This book presents a comprehensive set of radar and electronic warfare principles including many of the latest applications in a clear and consistent manner. Following on from the 3rd edition of this book (2004) Radar and Electronic Warfare Principles for the Non-specialist, 4th Edition, remains true to the traditional strength of the book, providing radar principles for the non-specialist, and also now introducing EW principles. All radar-related material has been reviewed, revised and enhanced as necessary. New to this edition: Significant revisions to; target signal-to-noise ratio, target detection theory, array antennas, radar measurements and tracking, and target signatures The addition of new EW-related material addressing electronic support (ES), electronic attack (EA), and electronic protection (EP) The advanced radar concepts chapter has been revised, including the addition of a section on modern multi-function, -mode, -mission radar systems. Most of the chapters are stand-alone allowing the reader to be selective and still benefit from the content. Exercises at the end of each chapter are provided to reinforce the concepts presented and illustrate their applications, making this book ideal for academic learning, training courses or self-study. Topics covered include: electromagnetic propagation, target detection, antennas, measurements and tracking, radar cross section and system applications. By reading this book, you should expect to be able to conduct a respectable, first-order radar system design or analysis and perform a first-order EW system design or analysis. This book will also provide you with the skills to critique the designs or analysis of others.
Based on time-tested course material, this authoritative text examines the key topics, advanced mathematical concepts, and novel analytical tools needed to understand modern communication and radar systems. It covers computational linear algebra theory, VLSI systolic algorithms and designs, practical aspects of chaos theory, and applications in beamforming and array processing, and uses a variety of CDMA codes, as well as acoustic sensing and beamforming algorithms to illustrate key concepts. Classical topics such as spectral analysis are also covered, and each chapter includes a wealth of homework problems. This is an invaluable text for graduate students in electrical and computer engineering, and an essential reference for practitioners in communications and radar engineering.
Expert coverage of the design and implementation of state estimation algorithms for tracking and navigation Estimation with Applications to Tracking and Navigation treats the estimation of various quantities from inherently inaccurate remote observations. It explains state estimator design using a balanced combination of linear systems, probability, and statistics. The authors provide a review of the necessary background mathematical techniques and offer an overview of the basic concepts in estimation. They then provide detailed treatments of all the major issues in estimation with a focus on applying these techniques to real systems. Other features include:
Suitable for graduate engineering students and engineers working in remote sensors and tracking, Estimation with Applications to Tracking and Navigation provides expert coverage of this important area.
Have you ever wondered how stealth planes achieve "invisibility," how sunken ships are found, or how fishermen track schools of fish in vast expanses of ocean? Radar and sonar echolocation -- a simple matter of sending, receiving, and processing signals. Weaving history with simple science, Mark Denny deftly reveals the world of radar and sonar to the curious reader, technology buff, and expert alike. He begins with an early history of the Chain Home radar system used during World War II and then provides accessible and engaging explanations of the physics that make signal processing possible. Basic diagrams and formulas show how electromagnetic and sound waves are transmitted, received, and converted into images, allowing you to literally see in the dark. A section on bioacoustic echolocation, with a focus on the superior sonar systems of bats and whales and a discussion of the advanced technology of next-generation airborne signal processors, opens the imagination to fascinating possibilities for the future.
Electrical Engineering Telecommunications Network Management Technologies and Implementations A follow-up to Telecommunications Network Management into the 21st Century: Techniques, Standards, Technologies, and Applications (IEEE Press 1994), this collection of original chapters written by leading experts in the field brings together a full range of applications topics in telecommunications network management. Telecommunications Network Management illustrates how related technology advancements in the telecommunications and computing industries can help engineers achieve cost-effective, end-to-end management of networks. The reader will understand how information modeling and distributed management help to simplify network representation, introduce computing platforms, and reduce operations costs. This book will help engineers and technical managers who face the challenge of integrating multiple technologies, working with multiple vendors, and identifying different management requirements. Topics covered include:
A comprehensive guide to state-of-the-art phased array-based systems and applications First developed in 1937 to help improve communication links between the United States and the United Kingdom, phased arrays have evolved far beyond their original purpose. In addition to their value in radio communications, phased arrays are now a vital component in national defense, space exploration, astronomy, and electronic warfare. Phased Array-Based Systems and Applications was written for researchers and engineers with a professional interest in phased array-based systems. Timely, authoritative, and comprehensive, it discusses the most current uses of phased arrays (operating at cm and mm wavelengths) in radar, radio astronomy, remote sensing, electronic warfare, spectrum surveillance, and communications. This exploration of systems that share the same principles and perform similar functions helps phased array users in all these fields learn more about the systems and applications in which they specialize. More important, the complementary nature of a variety of sensors is emphasized throughout the book. While his consistent focus is on practical applications, the author also provides generous coverage of basic theoretical principles to help readers understand the systems trade-offs made in the design of various phased arrays. An indispensable professional resource for radar and antenna engineers, Phased Array-Based Systems and Applications is also a superior graduate-level text for students in these fields.
An indispensable resource for all those who design, build, manage, and operate electronic navigation systems Avionics Navigation Systems, Second Edition, is a complete guide to the art and science of modern electronic navigation, focusing on aircraft. It covers electronic navigation systems in civil and military aircraft, helicopters, unmanned aerial vehicles, and manned spacecraft. It has been thoroughly updated and expanded to include all of the major advances that have occurred since the publication of the classic first edition. It covers the entire field from basic navigation principles, equations, and state-of-the-art hardware to emerging technologies. Each chapter is devoted to a different system or technology and provides detailed information about its functions, design characteristics, equipment configurations, performance limitations, and directions for the future. You'll find everything you need to know about:
Since the publication of Kayton and Fried's classic work, Avionics Navigation Systems, almost thirty years ago, tremendous strides have been made in the science and practice of navigation: satellite systems, improved sensors, new computer technology and software, interconnected avionics subsystems, and more. Completely updated to include the latest advances in navigation theory, hardware, and software, this brand-new edition provides comprehensive, unified coverage of the principles of modern navigation equipment and systems. The initial chapters establish the conceptual and technical foundations of the subject, with a concise overview of electronic navigation and a review of crucial principles and equations. Each of the ensuing chapters provides in-depth treatment of a specific navigation technology, including ground-based radio-navigation aids; satellite-based radio-navigation aids; integrated communication-navigation systems; inertial and stellar-inertial navigation systems; air-data sensors and algorithms that derive airspeed, angles of attack and sideslip, and barometric altitude; attitude and heading sensors and displays; Doppler radars, radar altimeters, and mapping radars; and terrain map-matching. The book concludes with a description of land-based and aircraft-carrier-based landing aids, air-traffic management, and avionic interfaces. Retaining the user-friendly organization of the first edition, each chapter presents basic functions and principles, and then discusses design characteristics and equipment configurations, performance limitations, and sources of error. Each chapter concludes with a prediction of future trends. Comparative performance levels, weights, power consumption, and costs are described where possible. A thorough index makes it easy to find material quickly. Avionics Navigation Systems, Second Edition, is an indispensable resource for all engineers and systems analysts who design, build, and maintain navigation and avionics equipment, as well as for the pilots and operations staff who use it.
The use of synthetic aperture radar (SAR) represents a new era in remote sensing technology. A complete handbook for anyone who must design an SAR system capable of reliably producing high quality image data products, free from image artifacts and calibrated in terms of the target backscatter coefficient. Combines fundamentals underlying the SAR imaging process and the practical system engineering required to produce quality images from a real SAR system. Beginning with a broad overview of SAR technology, it goes on to examine SAR system capabilities and components and detail the techniques required for design and development of the SAR ground data system with emphasis on the correlation processing. Intended for SAR system engineers and researchers, it is generously illustrated for maximum clarity.
"A well-constructed and concisely written book, incorporating a balanced combination of textual explanations and well-presented mathematical descriptions, which serves both as an introduction to many important aspects of radar but also as an extensive exercise in the usage and application of both the MATLAB and Python programming applications. It is eminently readable and understandable. I assess that it is probably most relevant to post graduate student scientists and engineers requiring a moderately detailed understanding of aspects of radar with a view to practical applications" Aerospace Magazine This comprehensive resource provides readers with the tools necessary to perform analysis of various waveforms for use in radar systems. It provides information about how to produce synthetic aperture (SAR) images by giving a tomographic formulation and implementation for SAR imaging. Tracking filter fundamentals, and each parameter associated with the filter and how each affects tracking performance are also presented. Various radar cross section measurement techniques are covered, along with waveform selection analysis through the study of the ambiguity function for each particular waveform from simple linear frequency modulation (LFM) waveforms to more complicated coded waveforms. The text includes the Python tool suite, which allows the reader to analyze and predict radar performance for various scenarios and applications. Also provided are MATLAB (R) scripts corresponding to the Python tools. The software includes a user-friendly graphical user interface (GUI) that provides visualizations of the concepts being covered. Users have full access to both the Python and MATLAB source code to modify for their application. With examples using the tool suite are given at the end of each chapter, this text gives readers a clear understanding of how important target scattering is in areas of target detection, target tracking, pulse integration, and target discrimination.
Micro-Doppler Characteristics of Radar Targets is a monograph on radar target's micro-Doppler effect theory and micro-Doppler feature extraction techniques. The micro-Doppler effect is presented from two aspects, including micro-Doppler effect analysis and micro-Doppler feature extraction, with micro-Doppler effects induced by different micro-motional targets in different radar systems analyzed and several methods of micro-Doppler feature extraction and three-dimensional micro-motion feature reconstruction presented. The main contents of this book include micro-Doppler effect in narrowband radar, micro-Doppler effect in wideband radar, micro-Doppler effect in bistatic radar, micro-Doppler feature analysis and extraction, and three-dimensional micro-motion feature reconstruction, etc. This book can be used as a reference for scientific and technical personnel engaged in radar signal processing and automatic target recognition, etc. It is especially suitable for beginners who are interested in research on micro-Doppler effect in radar.
This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing. Chapter 5 provides the electrical characterization and test results of the developed microwave and millimeter-wave stepped-frequency radar sensors. Finally, a summary and conclusion is provided.
Real-time testing and simulation of open- and closed-loop radio frequency (RF) systems for signal generation, signal analysis and digital signal processing require deterministic, low-latency, high-throughput capabilities afforded by user reconfigurable field programmable gate arrays (FPGAs). This comprehensive book introduces LabVIEW FPGA, provides best practices for multi-FPGA solutions, and guidance for developing high-throughput, low-latency FPGA based RF systems. Written by a recognized expert with a wealth of real-world experience in the field, this is the first book written on the subject of FPGAs for radar and other RF applications. The companion website for this book can be found at https://github.com/LVFPGABOOK/ |
You may like...
Detectability of Spread Spectrum Signals
Robin A. Dillard, George M. Dillard
Hardcover
R2,973
Discovery Miles 29 730
Robotic Navigation and Mapping with…
Martin Adams, Ebi Jose, …
Hardcover
R4,756
Discovery Miles 47 560
Multitarget-multisensor Tracking, v. 3…
Yaakov Bar-Shalom, William Dale Blair
Hardcover
R4,614
Discovery Miles 46 140
|