![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications > Radar
The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.
The quest for high resolution has preoccupied radio astronomers ever since radio waves were first detected from space fifty years ago. This venture was par ticularly stimulated by the discovery of quasars, and led to the development of interferometer techniques using baselines of transglobal dimensions. These meth ods have become known as Very Long Baseline Interferometry (VLBI). Arrays of radio telescopes situated all over the Earth (or even in space) are regularly used for researches in radio astronomy, reaching resolutions as small as a fraction of a milli arcsecond. The technique also allows the measurement of the positions of the radio telescopes to a few millimeters and so VLBI has become a major tool in geodesy and the study of the rotation of the Earth. VLBI has now passed the pioneer stage and is becoming a standard facility available to astronomers and geodesists, requiring the coordination of the operations of indpendently owned radio telescopes around the world. In Europe observatories from England, Federal Republic of Germany, France, Italy, Poland, Sweden and The Netherlands are coordinated in their VLBI activity by the European VLBI Network Consortium (EVN). The Programme Committee of the EVN allocates time to scientific projects on a routine basis three times a year. The Unites States has a similar arrangement of a network of independent radio observatories, and joint experiments using 'Global Network' are often made."
A gyrotron traveling-wave amplifier (gyro-TWT) with the high-power and broad-band capabilities is considered as a turn-on key for next generation high-resolution radar. The book presents the most advanced theory, methods and physics in a gyro-TWT. The most challenging problem of instability competition has been for the first time addressed in a focused and systematic way and reported via concise states and vivid pictures. The book is likely to meet the interest of researchers and engineers in radar and microwave technology, who would like to study the gyro-TWTs and to promote its application in millimeter-wave radars. Chao-Hai Du and Pu-Kun Liu are both professors at Peking University.
Artech House is pleased to reissue this classic work, originally published in 1967 and still considered by many to be the definitive text on radar signal analysis and design. The book describes the fundamental signal processing techniques that enable radar engineers to "design in" desired characteristics to the radar signal.
In these times, correctly and quickly identifying a stray electronic blip on a radar screen can have incalculable consequences. Now more than ever, radar electronic intelligence (ELINT) can be the first line of defense for the battlefield or the homeland. Offering new insight into radar signal analysis, this book ensures more reliable and timely gathering of electronic intelligence. Combining and updating the author's two previous definitive books on ELINT, this volume is the indispensable reference for every ELINT professional. Starting with basic theory, it gives a comprehensive and integrated view of radar's role in ELINT. The book explains how to identify different classes of radar signals and determine their source and location. It covers systems performance issues and evaluates the strengths and weaknesses of different systems configurations. The book also guides radar systems engineers through challenges of designing new generations of ELINT systems.
This new book from Richard Klemm, author of the highly successful Principles of Space-time Adaptive Processing (IEE,2002), examines the various applications of space-time adaptive processing including applications in OTH-radar, ground target tracking, STAP in real world clutter environments, jammer cancellation, superresolution, active sonar, seismics and communications. Including contributions from distinguished international authors, the book provides a unique overview of the field of space-time procesing. The book is divided in two parts; the first dealing with the classical adaptive suppression of airbourne and space based radar clutter and the second comprising of miscellaneous applications in other fields such as communications, underwater sound and seismics. The book will be of interest to those working in the field of sensor signal processing and in particular postgraduate students, research scientists, system engineers, university teachers and research project managers.
The micro-Doppler effect appears as Doppler frequency modulations in coherent laser or microwave radar systems induced by mechanical vibrations or rotations of a target or any part on the target. These Doppler modulations become a distinctive signature of a target that incorporates vibrating or rotating structures, and provides evidence of the identity of the target with movement. This book concentrates on the processing and application of radar micro-Doppler signatures in real world situations, providing readers with a working knowledge on various applications of radar micro-Doppler signatures such as detection, tracking and discrimination of vehicles and dismounts, identifying human movement based on radar micro-Doppler signatures, detection and tracking small boats in sea, detection and discrimination complex motion of missile warheads, discrimination of quadrupedal animals, and detection and tracking of flying birds. Topics covered include bistatic/multistatic micro-Doppler signatures, decomposition of micro-Doppler signatures, through-wall radar micro-Doppler signatures and ultrasound micro-Doppler signature studies. Radar Micro-Doppler Signatures: Processing and applications will be of interest to R&D researchers and engineers in government research centers, industries, and universities around the world who work on radar imaging and signal analysis, target feature extraction, and non-cooperative target recognition.
A small country builds a world-class telescope in its backyard and lives happily ever after (or at least for a quarter century). That in a nutshell is the story told in this collection of essays. The country of course is the Netherlands, and the telescope is the Westerbork Synthesis Radio Tele scope (WSRT), brainchild of Jan Oort. Living happily in this context is a continuing record of discovery and as such also a continuing basis for se curing observing time on facilities in other countries and operating at other frequencies. As our community celebrates the Silver Anniversary of the radio tele scope at Westerbork, it is fitting that we pause to take account of the scientific discoveries and insights it made possible. Initially the instrument represented the very significant step away from university-run, specialist facilities to a well-supported, common-user radio imager also having spec tral and polarization capabilities. It pioneered the mode of operation now common for satellite observatories, in which data is taken and calibrated by technicians and provided to researchers ready for analysis. It has been a major source of discovery in, among other areas, research on neutral hy drogen and studies of dark matter in galaxies.
Authored by engineers for engineers, this book is designed to be a practical and easy-to-understand solution sourcebook for real-world high-resolution and spot-light SAR image processing. Widely-used algorithms are presented for both system errors and propagation phenomena as well as numerous formerly-classified image examples. As well as providing the details of digital processor implementation, the text presents the polar format algorithm and two modern algorithms for spot-light image formation processing - the range migration algorithm and the chirp scaling algorithm. Bearing practical needs in mind, the authors have included an entire chapter devoted to SAR system performance including image quality metrics and image quality assessment. Another chapter contains image formation processor design examples for two operational fine-resolution SAR systems. This is a reference for radar engineers, managers, system developers, and for students in high-resolution microwave imaging courses. It includes 662 equations, 265 figures, and 55 tables.
Compiles the latest techniques for those who design advanced systems for tracking, surveillance and navigation. This second volume expands upon the first with 11 new chapters. The text includes pertinent contributions from leading international experts in this field.
Providing the first comprehensive treatment, this book covers all aspects of the laser Doppler and phase Doppler measurement techniques, including light scattering from small particles, fundamental optics, system design, signal and data processing, tracer particle generation, and applications in single and two-phase flows. The book is intended as both a reference book for more experienced users as well as an instructional book for students. It provides ample material as a basis for a lecture course on the subject and represents one of the most comprehensive treatments of the phase Doppler technique to date. The book will serve as a valuable reference book in any fluid mechanics laboratory where the laser Doppler or phase Doppler techniques are used. This work reflects the authors' long practical experience in the development of the techniques and equipment, as the many examples confirm.
This book describes the basic theory and design tools you need to develop, design, and analyze high-resolution radar systems, subsystems, components, and processing methods.
This book provides you with a complete understanding of error effects in coherent systems. Covering performance issues never before addressed in one source, it places special emphasis on phase noise effects and detection of targets in clutter. Supported by 196 illustrations, 260 equations, and 150 references.
The purpose of the Ultra-Wideband Short-Pulse Electromagnetics
Conference series is to focus on advanced technologies for the
generation, radiation and detection of ultra-wideband short pulse
signals, taking into account their propagation, scattering from and
coupling to targets of interest; to report on developments in
supporting mathematical and numerical methods; and to describe
current and potential future applications of the technology.
Using the Bayesian inference framework, this book enables the reader to design and develop mathematically sound algorithms for dealing with tracking problems involving multiple targets, multiple sensors, and multiple platforms. It shows how non-linear Multiple Hypothesis Tracking and the Theory of United Tracking are successful methods when multiple target tracking must be performed without contacts or association. With detailed examples illustrating the developed concepts, algorithms, and approaches, the book helps the reader track when observations are non-linear functions of target site, when the target state distributions or measurements error distributions are not Gaussian, when notions of contact and association are merged or unresolved among more than one target, and in low data rate and low signal to noise ratio situations.
This book tells in non-technical language how the British Navy contributed to the development of naval radar in World War 2. Addressed to the general reader, it tells not only the technical story in simple terms, but also of the operational use of shipborne radar at sea - for warning, for fire control, for fighter direction, for navigation, in all theatres of war - and particularly about the people who designed and fitted the equipment, and those who used it at sea.
The drive is on to devise LPI radar systems that evade hostile detection as well as develop non-cooperative intercept devices that outsmart enemy LPI radar. Based on the author's own design experience, this comprehensive, hands-on book gives you the latest design and development techniques to innovate new LPI radar systems and discover new ways to intercept enemy LPI radar. Over 200 graphics illustrate the underlying principles of LPI waveform design and help you visually identify waveform parameters. Filled with more than 500 equations that provide rigorous mathematical detail, this book can be used by both entry-level and seasoned engineers. Besides thoroughly treating LPI radar theory and intercept signal processing, this book includes such real-world applications as anti-ship cruise missile LPI seeker solutions. The CD-ROM contains MATLAB code that you can use on the job to evaluate complex LPI radar-receiver interactions.
This book presents selected contributions of the Ultra-Wideband Short-Pulse Electromagnetics 7 Conference, including electromagnetic theory, scattering, Ultrawideband (UWB) antennas, UWB systems, ground penetrating radar, UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques.
Synthetic aperture radar and inverse synthetic aperture radar (SAR/ISAR) images have been largely used for monitoring small to large areas and more specifically for target recognition/identification. However, the technology has limitations due to the use of classical monostatic, single channel, single frequency and single polarization systems. To overcome these limitations, solutions have been proposed that show the benefit of using multiple frequencies, spatial channels, polarisations and perspective, in one word multi-dimensional radar imaging systems when dealing with non-cooperative targets. Multidimensional Radar Imaging introduces a new framework within which to address the problem of radar imaging and target recognition as it jointly looks at optimising the use of multiple channels to significantly outperform classical radar imaging systems. It has been used in the military within NATO for the last few years and the technology is now declassified. Topics covered include three-dimensional ISAR; STAP-ISAR; wide-band multi-look passive ISAR; radar tomography; multistatic PCL-SAR; fusion of multistatic ISAR images with large angular separation; rotor blade parameter estimation with multichannel passive radar; multistatic 3D ISAR imaging of maritime targets; challenges of semi-cooperative bi/multistatic SAR using Cosmo SkyMEd as an illuminator; and lessons learnt from the NATO SET-196 RTG on multi-channel/multi-static radar imaging of non-cooperative targets. |
![]() ![]() You may like...
Artificial Intelligence Applications and…
Ilias Maglogiannis, Lazaros Iliadis, …
Hardcover
R2,962
Discovery Miles 29 620
Visual Analytics for Data Scientists
Natalia Andrienko, Gennady Andrienko, …
Hardcover
R2,706
Discovery Miles 27 060
Advances in Data Science and Management…
Samarjeet Borah, Valentina Emilia Balas, …
Hardcover
R5,690
Discovery Miles 56 900
Beyond Craft - An Anti-Handbook for…
Steve Westbrook, James Ryan
Hardcover
R2,865
Discovery Miles 28 650
Computational Intelligence for Big Data…
D P Acharjya, Satchidananda Dehuri, …
Hardcover
|