Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications > Radar
Accident records show that sooner or later hindrances near a waterway will be hit by ships, be it navigation marks, bridge structures, reefs or shallows. With this background modelling and analysis of ship collisions to bridge structures have an increasing importance as the basis for rational decision making in connection with planning, design and construction of bridges over navigable waters. The International Symposium on Ship Collision Analysis focuses on advances in accident analysis, collision prevention and protective measures. The publication Ship Collision Analysis, Proceedings of the 1998 International Symposium, presents the papers of international experts in ship collision analysis and structural design. The contributions give the state of the art and point to future development trends with in the focus areas.
Based on the experiences of the Department of Information Engineering of the University of Pisa and the Radar and Surveillance System (RaSS) national laboratory of the National Interuniversity Consortium of Telecommunication (CNIT), Radar Imaging for Maritime Observation presents the most recent results in radar imaging for maritime observation. The book explores both the areas of sea surface remote sensing and maritime surveillance providing key theoretical concepts of SAR and ISAR imaging and more advanced and ad-hoc techniques for applications in maritime scenarios. The book is organized in two sections. The first section discusses the fundamentals of standard SAR/ISAR processing and novel imaging techniques, such as Bistatic, Passive, and, 3D Interferometric ISAR. The second section focuses on the applications and results obtained by processing real data from maritime observations like SAR image processing for oil spill, detection in SAR images and fractal analysis. Useful to both beginners and experts in maritime observation, this book provides several examples of (mainly space-borne) radar imaging of maritime targets. Nevertheless, the same principles and techniques apply to the case of manned or unmanned carriers and to ground and air moving targets.
With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates. Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracking, and localization of indoor targets can be achieved using compressed observations that amount to a tiny percentage of the entire data volume. Capturing the latest and most important advances in the field, this state-of-the-art text: Covers both ground-based and airborne synthetic aperture radar (SAR) and uses different signal waveforms Demonstrates successful applications of compressive sensing for target detection and revealing building interiors Describes problems facing urban radar and highlights sparse reconstruction techniques applicable to urban environments Deals with both stationary and moving indoor targets in the presence of wall clutter and multipath exploitation Provides numerous supporting examples using real data and computational electromagnetic modeling Featuring 13 chapters written by leading researchers and experts, Compressive Sensing for Urban Radar is a useful and authoritative reference for radar engineers and defense contractors, as well as a seminal work for graduate students and academia.
This book presents the latest theory, developments, and applications related to high resolution materials-penetrating sensor systems. An international team of expert researchers explains the problems and solutions for developing new techniques and applications. Subject areas include ultrawideband (UWB) signals propagation and scattering, materials-penetrating radar techniques for small object detection and imaging, biolocation using holographic techniques, tomography, medical applications, nondestructive testing methods, electronic warfare principles, through-the-wall radar propagation effects, and target identification through measuring the target return signal spectrum changes.
August 1939 was a time of great flux. The fear of impending war fueled by the aggression of Nazi Germany forced many changes. Young people pursuing academic research were plunged into an entirely different kind of research and development. For Bernard Lovell, the war meant involvement in one of the most vital research projects of the war-radar. Echoes of War: The Story of H2S Radar presents a passionate first-hand account of the development of the Home Sweet Home (H2S) radar systems during World War II. The book provides numerous personal insights into the scientific culture of wartime Britain and details the many personal sacrifices, setbacks, and eventual triumphs made by those actively involved. Bernard Lovell began his work on airborne interception radar in Taffy Bowen's airborne radar group. He was involved in the initial development of the application of the 10 centimeter cavity magnetron to airborne radar that revolutionized radar systems. In the autumn of 1941, the failure of Bomber Command to locate its target over the cloudy skies of Europe prompted the formation of a new group to develop a blind bombing system. Led by Lovell, this group developed the H2S radar system to identify towns and other targets at night or during heavy cloud cover. H2S first saw operational use with the Pathfinder Squadrons in the attack on Hamburg during the night of January 30-31, 1943. Two months later, modified H2S units installed in Coastal Command aircraft operating over the Bay of Biscay had a dramatic tactical effect on the air war against U-boats. The tide had begun to turn. In this fascinating chronicle of the H2S radar project, Sir Bernard Lovell recreates the feel and mood of the wartime years.
Based on the experiences of the Department of Information Engineering of the University of Pisa and the Radar and Surveillance System (RaSS) national laboratory of the National Interuniversity Consortium of Telecommunication (CNIT), Radar Imaging for Maritime Observation presents the most recent results in radar imaging for maritime observation. The book explores both the areas of sea surface remote sensing and maritime surveillance providing key theoretical concepts of SAR and ISAR imaging and more advanced and ad-hoc techniques for applications in maritime scenarios. The book is organized in two sections. The first section discusses the fundamentals of standard SAR/ISAR processing and novel imaging techniques, such as Bistatic, Passive, and, 3D Interferometric ISAR. The second section focuses on the applications and results obtained by processing real data from maritime observations like SAR image processing for oil spill, detection in SAR images and fractal analysis. Useful to both beginners and experts in maritime observation, this book provides several examples of (mainly space-borne) radar imaging of maritime targets. Nevertheless, the same principles and techniques apply to the case of manned or unmanned carriers and to ground and air moving targets.
A resource like no other—the first comprehensive guide to phase unwrapping Phase unwrapping is a mathematical problem-solving technique increasingly used in synthetic aperture radar (SAR) interferometry, optical interferometry, adaptive optics, and medical imaging. In Two-Dimensional Phase Unwrapping, two internationally recognized experts sort through the multitude of ideas and algorithms cluttering current research, explain clearly how to solve phase unwrapping problems, and provide practicable algorithms that can be applied to problems encountered in diverse disciplines. Complete with case studies and examples as well as hundreds of images and figures illustrating the concepts, this book features:
Two-Dimensional Phase Unwrapping skillfully integrates concepts, algorithms, software, and examples into a powerful benchmark against which new ideas and algorithms for phase unwrapping can be tested. This unique introduction to a dynamic, rapidly evolving field is essential for professionals and graduate students in SAR interferometry, optical interferometry, adaptive optics, and magnetic resonance imaging (MRI).
With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates. Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracking, and localization of indoor targets can be achieved using compressed observations that amount to a tiny percentage of the entire data volume. Capturing the latest and most important advances in the field, this state-of-the-art text:
Featuring 13 chapters written by leading researchers and experts, Compressive Sensing for Urban Radar is a useful and authoritative reference for radar engineers and defense contractors, as well as a seminal work for graduate students and academia.
This book presents the current history of United States military strategy in Afghanistan as an example of dysfunctional policy discourse among the nation's elites. The legitimacy of a country's military strategy can become a subject of intense public debate and doubt, especially in prolonged conflicts. Arguments typically hinge on disagreements about the values at stake, the consequences of action or inaction, and the authority of those responsible for the plan. As the US entered its second decade at war in Afghanistan, political and military leaders struggled to explain the ends and means of their strategy through internal policy debates, the promotion of counterinsurgency doctrine, and day-to-day accounts of the war's progress. Military Strategy as Public Discourse considers recent US strategy in Afghanistan as a form of valid and equitable public discussion among those with the ability to affect outcomes. The work examines the dominant forms of discourse used by the various groups of elites who make and execute strategy, and considers how representations of these forms of discourse in news media shapes elite understanding of the purpose of US efforts in wars of choice. The book proposes how policy-makers should address the problems of public discourse on war, which tends to exclude or marginalize relevant elites and focus on narrow questions of validity. This book will be of much interest to students of strategic studies, US foreign policy, and security studies in general.
A comprehensive resource on airborne synthetic aperture radar (SAR) systems, Airborne Circulatory Polarized SAR explains the theory, system design, hardware and software, and applications of airborne circularly polarized SAR in environmental monitoring and other uses. Readers learn how to build the hardware and software of circularly polarized SAR, the antenna system, and how to generate point target responses and images using the range doppler algorithm (RDA) from raw signal data. The book discusses applications and analyzing techniques using a circularly polarized SAR system and image processing. Images and MATLAB codes are provided to help professionals and researchers with their applications and future studies. Features 1. Provides the theory of circularly polarized wave and polarimetry related to system design, scattering analysis, polarimetric SAR, and applications in microwave remote sensing. 2. Explains the real radio frequency (RF) system and the original antenna, including circuit explanation and know-how of measurement technique to adjust to the required parameter in system design. 3. Discusses the technique of ground test and flight mission to calibrate and validate the performance of airborne circularly polarized SAR. 4. Highlights image signal processing with MATLAB codes and how to obtain a single look complex (SLC) image for further applications. 5. Includes several applications of airborne circularly polarized SAR from international leading experts. This book is beneficial to professionals, researchers, academics, and graduate students from disciplines such as Electronic Engineering; Radar Systems; Aerospace Engineering; Signal Processing; Image Processing; Environmental Remote Sensing.
In these times, correctly and quickly identifying a stray electronic blip on a radar screen can have incalculable consequences. Now more than ever, radar electronic intelligence (ELINT) can be the first line of defense for the battlefield or the homeland. Offering new insight into radar signal analysis, this book ensures more reliable and timely gathering of electronic intelligence. Combining and updating the author's two previous definitive books on ELINT, this volume is the indispensable reference for every ELINT professional. Starting with basic theory, it gives a comprehensive and integrated view of radar's role in ELINT. The book explains how to identify different classes of radar signals and determine their source and location. It covers systems performance issues and evaluates the strengths and weaknesses of different systems configurations. The book also guides radar systems engineers through challenges of designing new generations of ELINT systems.
Your cutting-edge introduction to radar signal processing-fully updated for the latest advances This up-to-date guide provides in-depth coverage of the full breadth of foundational radar signal processing methods of waveform design, Doppler processing, detection, tracking, imaging, and adaptive processing from a digital signal processing perspective. The techniques of linear systems, filtering, sampling, and Fourier analysis are used throughout to provide a unified tutorial approach. Developed from the author's extensive academic and professional experience, Fundamentals of Radar Signal Processing, Third Edition has been revised and updated throughout. Readers will find the solid foundations of earlier editions enhanced with new material on such topics as keystone formatting, detection in spiky clutter, range migration and backprojection imaging, virtual arrays, ground moving target indication, and many more. Presents complete coverage of foundational digital radar signal processing techniques Integrates linear FMCW techniques of emerging fields such as automotive radar with pulsed methods Includes additional homework problems in all chapters Comes with an online suite of answer keys, solutions manuals, tutorial MATLAB demos, and technical notes
Providing a practical review of the latest technology in the field, " "Ultrawideband Radar Applications and Design presents cutting-edge advances in theory, design, and practical applications of ultrawideband (UWB) radar. This book features contributions from an international team of experts to help readers learn about a wide range of UWB topics, including:
This book s contributors use practical information to illustrate the latest theoretical developments and demonstrate UWB radar principles through case studies. Radar system engineers will find ideas for precision electronic sensing systems for use in medical, security, industrial, construction, and geophysical applications, as well as those used in archeological, forensic and transportation operations.
The first book to present a systematic and coherent picture of MIMO radars Due to its potential to improve target detection and discrimination capability, Multiple-Input and Multiple-Output (MIMO) radar has generated significant attention and widespread interest in academia, industry, government labs, and funding agencies. This important new work fills the need for a comprehensive treatment of this emerging field. Edited and authored by leading researchers in the field of MIMO radar research, this book introduces recent developments in the area of MIMO radar to stimulate new concepts, theories, and applications of the topic, and to foster further cross-fertilization of ideas with MIMO communications. Topical coverage includes: Adaptive MIMO radar Beampattern analysis and optimization for MIMO radar MIMO radar for target detection, parameter estimation, tracking, association, and recognition MIMO radar prototypes and measurements Space-time codes for MIMO radar Statistical MIMO radar Waveform design for MIMO radar Written in an easy-to-follow tutorial style, MIMO Radar Signal Processing serves as an excellent course book for graduate students and a valuable reference for researchers in academia and industry.
Polarimetric Radar Signal Processing provides an overview of advanced techniques and technologies developed for polarimetric radars to meet challenging performance requirements. It aims to cover some of the most challenging application fields, including: target detection for active and passive surveillance systems, interference suppression, detection of temporal changes in a given scene, environment classification, automatic target recognition, non-cooperative target imaging, polarimetric coding in radar and SAR systems, pol-SAR ambiguities suppression, space-debris detection, tracking, and classification, estimation of biological and behavioural parameters of insects, precipitations localization as well as type and motion parameters estimation via real-life practical polarimetric weather radar. The book balances a practical point of view with a rigorous mathematical approach corroborated with a wealth of numerical case studies and real experiments. Additionally, the book has a cross-disciplinary approach as it aims to exploit cross-fertilization by the recent and latest research and discoveries in statistical signal processing theory and electromagnetism. Each chapter is self-contained and is written by renowned researchers in polarimetric radar signal processing. The emphasis of the book is on both theoretical results and practical applications that clearly show the potential benefits in radar performance using polarimetric diversity in different application domains. Cross referencing and a common notation have been realized so that the related material as well as equations can be easily connected. This significantly enhances the book's value as a reference. This book is addressed to systems engineers and their managers in civilian as well as defence companies; technical staff in procurement agencies and their technical advisers; students at MSc and PhD levels in signal processing, electrical engineering, systems and defence engineering; and any persons interested in applications of polarimetry theory to radar engineering.
Bistatic Synthetic Aperture Radar covers bistatic SAR in a comprehensive way, presenting theory, method and techniques, as well as the most recent research and near-future applications. The book begins with imaging principles and characteristics of monostatic SAR, moving on to common and novel problems before presenting theories, methods and experimental system design. The title presents the design of experimental systems, research results and experimental verification. It gives key knowledge from a leading research group, including one of the earliest bistatic side-looking SAR experiments and the first bistatic forward-looking SAR experiment in the world that used two aircraft. Six chapters cover imaging theory, imaging algorithms, parameter estimation, motion compensation, synchronization and experimental verification. The book describes physical concepts simply and clearly and provides concise mathematical derivations.
This manual/workbook, both authors of which have been members of the Collision Avoidance Radar Department of the Maritime Institute of Technology and Graduate Studies, provides the means for an operator to develop an "at a glance" capacity on a stabilized relative motion radar. Once the system of "situation recognition" has been mastered, a multiplicity of targets can be handled safely and surely, and collision avoidance becomes quite simple. The real time method of plotting equips the deck officer to pass the Coast Guard's radar observer test.
There has long been a strong collaboration between geologists and archaeologists, and the sub-field of geoarchaeology is well developed as a discipline in its own right. This book now bridges the gap between those fields and the geophysical technique of ground-penetrating radar (GPR), which allows for three-dimensional analysis of the ground to visualize both geological and archaeological materials. This method has the ability to produce images of the ground that display complex packages of materials, and allows researchers to integrate sedimentary units, soils and associated archaeological features in ways not possible using standard excavation techniques. The ability of GPR to visualize all these buried units can help archaeologists place ancient people within the landscapes and environments of their time, and understand their burial and preservation phenomena in three-dimensions. Readership: Advanced students in archaeology and geoarchaeology, as well as practicing archaeologists with an interest in GPS techniques.
This 600 page textbook must be a good candidate for being the authoritative reference on its subject...This book reveals all through a good, clear text amply illustrated...The authors and publisher are to be congratulated on an excellent production.--The Naval Review Well organized, clear and easy to read. The second edition has been enlarged with various items devoted to new electronic equipment now encountered by mariners, especially those concerned with navigational and radiocommunication equipment.--International Hydrographic Bulletin A major and standard text, now much enlarged and revised with sections on radar, communications, the gyro compass and all navigation systems encountered in merchant ships. Full and expert treatment of all aspects of electronic navigation and communication systems making it one of the leading references on its subjects.--Lloyds List
A real-world guide to practical applications of ground penetrating radar (GPR) The nondestructive nature of ground penetrating radar makes it an important and popular method of subsurface imaging, but it is a highly specialized field, requiring a deep understanding of the underlying science for successful application. "Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing" provides experienced professionals with the background they need to ensure precise data collection and analysis. Written to build upon the information presented in more general introductory volumes, the book discusses the fundamental mathematical, physical, and engineering principles upon which GPR is built. Real-world examples and field data provide readers an accurate view of day-to-day GPR use. Topics include: 2D scattering for dielectric and magnetic targets3D scattering equations and migration algorithmsHost medium characterization and diffraction tomographyTime and frequency steps in GPR data samplingThe Born approximation and the singular value decomposition The six appendices contain the mathematical proofs of all examples discussed throughout the book. "Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing" is a comprehensive resource that will prove invaluable in the field.
This book reports the latest results in the study of Bistatic/Multistatic SAR system and signal processing techniques. Novel research ideas and experimental verification have been collected on all kinds of configurations of Bistatic/Multistatic SAR system, including the preliminary construction of system model, imaging algorithm design, mission design and the corresponding application representations etc. Handy well-prepared tables are provided for readers' quick-reference, and the practical design of an interferometric SAR system is illustrated step by step. The book will be of interest to university researchers, R&D engineers and graduate students in Remote Sensing who wish to learn the core principles, methods, algorithms, and applications of Bistatic/Multistatic SAR system.
For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. This cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defence surveillance systems, and examines defence-related applications of particle filters to nonlinear and non-Gaussian problems. nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of manoeuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.
The important and fascinating topics of radar enjoy an extensive audience in industry and government but deserve more attention in undergraduate education to better prepare graduating engineers to meet the demands of modern mankind. Radar is not only one of the major applications of electronics and electromagnetic communications, but it is also a mature scientific discipline with significant theoretical and mathematical foundations that warrant an intellectual and educational challenge. Fundamental Principles of Radar is a textbook providing a first exposure to radar principles. It provides a broad concept underlying the basic principle of operations of most existing radar systems and maintains a good balance of mathematical rigor to convince readers without losing interest. The book provides an extensive exposition of the techniques currently being used for radar system design, analysis, and evaluation. It presents a comprehensive set of radar principles, including all features of modern radar applications, with their underlying derivations using simple mathematics. Coverage is limited to the main concepts of radar in order to present them in a systematic and organized fashion. Topics are treated not as abstruse and esoteric to the point of incomprehensibility, but the very complex and rich technology of radar is distilled into its fundamentals. The author's emphasis is on clarity without sacrificing rigor and completeness, thus making the book broad enough to satisfy a variety of backgrounds and interests. Thorough documentation provides an unusual degree of completeness for a textbook at this level, with interesting and sometimes thought-provoking content to make the subject even more appealing. Key Features: Covers a wide range of topics in radar systems Includes examples and exercises to reinforce the concepts presented and explain their applications Provides self-contained chapters useful for readers seeking selective topics Provides broad concepts underlying the basic principles of operations of most types of radars in use today Includes documentation to lead to further reading of interesting concepts and applications
This full color book is a comprehensive visual reference for the interpretation of synthetic aperture radar (SAR) images with examples of how technological specifications may affect interpretation solutions. It contains a summary review of image acquisition parameters of consequence on the visual representation of objects, introduces traditional interpretation keys under different light and applies them for considering regional landscape components and identifying large-scale geographical ensembles. Through elements of interpretation such as the construct of tone, texture, pattern, size, and shape, the book explains the rich unique context of many terrains. It provides also several SAR X- and C-band image examples of regional and large-scale land use and land cover (LULC) ensembles, includes important explanations for each illustration, and highlights selected SAR image applications. Ancillary information includes acquisition specifications, a geographic scale, and the image-center latitude and longitude. Features: Provides ready access to any type of information for an image interpretation problem related to current LULC classification schemes. Presents scalable geographic information interpreted at a regional scale and land cover ensembles that can also be interpreted locally. Provides comparative examples of images acquired from X- and C-band, opposed look directions, near- and far-range incidence angles, like- and cross-polarization modes. Includes practical explanations easily transferred to individual's research projects. Designed as "visual dictionary," SAR Image Interpretation for Various Land Covers: A Practical Guide, is an excellent introduction to the visual interpretation of SAR images for numerous types of LULC. Both practitioners and students will familiarize themselves with and expand their knowledge of geographic information conveyed from radar images while government agencies and businesses that use LULC-related data for emergency response cases of for urban and regional planning, will find this book invaluable.
Originally published in 1954, as a second edition of a 1947 original, this book explores in depth the rapid research and development of radar technology throughout the Second World War. Notably, the subject matter of radar falls into two distinct categories: the principles of the subject and their application to practical use. The principles are described in the first sixteen chapters of the book, whilst the last three chapters deal with the practical application of radar. The book also presents a description of military radar, the civil uses of radar and the extensive applications of radar technique in the physical sciences. Diagrams and photographs are included for reference. This book will be of great value to scholars of the history of physics. |
You may like...
Micro-Doppler Radar and Its Applications
Francesco Fioranelli, Hugh Griffiths, …
Hardcover
Multifunction Array Radar - System…
Sergio Sabatini, Marco Tarantino
Hardcover
R3,348
Discovery Miles 33 480
Detectability of Spread Spectrum Signals
Robin A. Dillard, George M. Dillard
Hardcover
R2,973
Discovery Miles 29 730
|