![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment
This book contains all the necessary information and advice for anyone wishing to obtain electron micrographs showing the most accurate ultrastructural detail in thin sections of any type of biological specimen. The guidelines for the choice of preparative methods are based on an extensive survey of current laboratory practice. For the first time, in a textbook of this kind, the molecular events occurring during fixation and embedding are analysed in detail. The reasons for choosing particular specimen preparation methods are explained and guidance is given on how to modify established techniques to suit individual requirements. All the practical methods advocated are clearly described, with accompanying tables and the results obtainable are illustrated with many electron micrographs. Portland Press Series: Practical Methods in Electron Microscopy, Volume 17, Audrey M. Glauert, Editor Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Theodore Gray has become a household name among fans, both young and old, of popular science and mechanics with his bestselling trilogy of books: The Elements, Molecules, and Reactions. In How Things Work, he explores the mechanical underpinnings of dozens of types of machines, from the cotton gin to the wristwatch to an industrial loom, and shares his deep, firsthand appreciation and knowledge of the world's most essential mechanical systems. Filled with stunning original photographs by Nick Mann, How Things Work is a must-have exploration of stuff-large and small-for any builder, maker or lover of mechanical things.
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the authors gained a unique perspective on the requirements and attitudes of users as well as manufacturers of parallel computers. The text first introduces the architecture of modern cache-based microprocessors and discusses their inherent performance limitations, before describing general optimization strategies for serial code on cache-based architectures. It next covers shared- and distributed-memory parallel computer architectures and the most relevant network topologies. After discussing parallel computing on a theoretical level, the authors show how to avoid or ameliorate typical performance problems connected with OpenMP. They then present cache-coherent nonuniform memory access (ccNUMA) optimization techniques, examine distributed-memory parallel programming with message passing interface (MPI), and explain how to write efficient MPI code. The final chapter focuses on hybrid programming with MPI and OpenMP. Users of high performance computers often have no idea what factors limit time to solution and whether it makes sense to think about optimization at all. This book facilitates an intuitive understanding of performance limitations without relying on heavy computer science knowledge. It also prepares readers for studying more advanced literature. Read about the authors' recent honor: Informatics Europe Curriculum Best Practices Award for Parallelism and Concurrency
The Oxford Handbook of the History of Physics brings together cutting-edge writing by more than twenty leading authorities on the history of physics from the seventeenth century to the present day. By presenting a wide diversity of studies in a single volume, it provides authoritative introductions to scholarly contributions that have tended to be dispersed in journals and books not easily accessible to the general reader. While the core thread remains the theories and experimental practices of physics, the Handbook contains chapters on other dimensions that have their place in any rounded history. These include the role of lecturing and textbooks in the communication of knowledge, the contribution of instrument-makers and instrument-making companies in providing for the needs of both research and lecture demonstrations, and the growing importance of the many interfaces between academic physics, industry, and the military.
This market-leading manual for the first-year physics laboratory course offers a wide range of class-tested experiments designed specifically for use in small to mid-size lab programs. A series of integrated experiments emphasizes the use of computerized instrumentation and includes a set of "computer-assisted experiments" that allow you to gain experience with modern equipment. By analyzing data through two different methods, learners gain a greater understanding of the concepts behind the experiments. The Eighth Edition is updated with four new economical labs and thirty new Pre-Lab Demonstrations, designed to capture interest prior to the lab and requiring only widely available materials and items.
Most lab manuals assume a high level of knowledge among biochemistry students, as well as a large amount of experience combining knowledge from separate scientific disciplines. Biochemistry in the Lab: A Manual for Undergraduates expects little more than basic chemistry. It explains procedures clearly, as well as giving a clear explanation of the theoretical reason for those steps. Key Features: Presents a comprehensive approach to modern biochemistry laboratory teaching, together with a complete experimental experience Includes chemical biology as its foundation, teaching readers experimental methods specific to the field Provides instructor experiments that are easy to prepare and execute, at comparatively low cost Supersedes existing, older texts with information that is adjusted to modern experimental biochemistry Is written by an expert in the field This textbook presents a foundational approach to modern biochemistry laboratory teaching together with a complete experimental experience, from protein purification and characterization to advanced analytical techniques. It has modules to help instructors present the techniques used in a time critical manner, as well as several modules to study protein chemistry, including gel techniques, enzymology, crystal growth, unfolding studies, and fluorescence. It proceeds from the simplest and most important techniques to the most difficult and specialized ones. It offers instructors experiments that are easy to prepare and execute, at comparatively low cost.
This concise introductory guide explains the values that should inform the responsible conduct of scientific research in today's global setting. Featuring accessible discussions and ample real-world scenarios, Doing Global Science covers proper conduct, fraud and bias, the researcher's responsibilities to society, communication with the public, and much more. The book places special emphasis on the international and highly networked environment in which modern research is done, presenting science as an enterprise that is being transformed by globalization, interdisciplinary research projects, team science, and information technologies. Accessibly written by an InterAcademy Partnership committee comprised of leading scientists from around the world, Doing Global Science is required reading for students, practitioners, and anyone concerned about the responsible conduct of science today. * Provides practical guidance and instructions for doing scientific research in today's global setting * Covers everything from responsible conduct to communication with the public * Features numerous real-world scenarios drawn from an array of disciplines and national contexts * Focuses on issues commonly encountered in international collaborations * Written by a panel of leading experts from around the world * An essential guide for practicing scientists and anyone concerned about fostering research integrity
Goerg Michler summarizes the large field of electron microscopy and clearly presents the different techniques. The author clearly describes the possible applications of microscopy and the requirements for specimen preparation. He illustrates the descriptions with picture examples from practice. The Author: Prof. Dr. rer. nat. habil. Goerg H. Michler was head of the Institute for Materials Science at Martin Luther University Halle-Wittenberg, is honorary chairman of the Institute for Polymer Materials e.V. and chairman of the Heinz Bethge Foundation for Applied Electron Microscopy.
VOLUME 25 Reviews in Computational Chemistry Kenny B. Lipkowitz and Thomas R. Cundari This Volume, Like Those Prior To It, Features Pedagogically Driven Reviews By Experts In Various Fields Of Computational Chemistry. Volume 25 Contains: Eight Chapters Covering The Glass Transition In Polymer Melts, Atomistic Modeling Of Friction, The Computation Of Free Volume, Structural Order And Entropy Of Liquids And Glasses, The Reactivity Of Materials At Extreme Conditions, Magnetic Properties Of Transition Metal Clusters, Multiconfigurational Quantum Methods For The Treatment Of Heavy Metals, Recursive Solutions To Large Eigenvalue Problems, And The Development And Uses Of Artificial Intelligence In Chemistry. From Reviews of the Series "Reviews in Computational Chemistry remains the most valuable
reference to methods and techniques in computational
chemistry." "One cannot generally do better than to try to find an
appropriate article in the highly successful Reviews in
Computational Chemistry. The basic philosophy of the editors seems
to be to help the authors produce chapters that are complete,
accurate, clear, and accessible to experimentalists (in particular)
and other nonspecialists (in general)."
Electron tunnelling spectroscopy is a research tool which has strongly advanced understanding of superconductivity. With the invention of the scanning tunneling microscope, STM, by Nobelists G. Binnig and H. Rohrer, beautiful images of atoms, rings of atoms and of exotic states in high temperature superconductors have appeared. Some of the most famous images of any kind, at this date, are STM topographs. This book explains the physics and the instrumentation behind the advances illustrated in the famous images, and summarizes the state of knowledge that has resulted. It presents the current state of the art of tunneling- and scanning tunneling spectroscopies of atoms, molecules and especially superconductors. The first edition of Principles of Electron Tunneling Spectroscopy has been a standard reference for active researchers for many years. This second edition fully embraces the advances represented by the scanning tunnelling microscope and, especially, scanning tunnelling spectroscopy. Stunning images of single atoms and spectral images of impurity states in high temperature superconductors will set this volume apart from its predecessor. The background and current status are provided for applications of Scanning Tunneling Microscopy and Spectroscopy to single atoms and molecules, including determination of bonding energies and vibrational frequencies. The applications to high temperature superconductivity are carefully introduced and the current status is described. A new section covers the astounding advances in instrumentation, which now routinely provide atomic resolution, and, in addition, developments in imaging and image processing, such as Fourier Transform Scanning Tunneling Spectroscopy.
Computational Methods in Physics, Chemistry and Biology offers an accessible introduction to key computational techniques used within science, including quantum mechanics, dynamics, evolutionary methods and molecular dynamics. Assuming only a limited background in computational methods, this book provides the reader with a series of comprehensive examples, problems and practical-based tasks from the basics through to more complex ideas and techniques. Beginning with an introduction to a numerical solution of Schrödinger's Equation the text moves on to discuss perturbation theory, variational calculations, diffusion, dynamics, Monte Carlo simulations and genetic algorithms. Aimed at those new to the field, the book will enable the reader to develop and implement computational methods for the solutions of a range of problems in science. Features:
This book explicates the optical controls of antiferromagnetic spins by intense terahertz (THz) electromagnetic waves. The book comprises two key components: (1) the experimental demonstration of the enhancement of a THz magnetic field using a split-ring resonator (SRR) and (2) the control of the direction of magnetization by using the enhanced THz magnetic field to break the symmetry of optically-induced phase transition. These make up the first step leading to future spintronics devices. In the beginning of the book, the author reviews the basics of the ultrafast laser and nonlinear optical techniques as well as the previously achieved experiments to control spin dynamics by THz magnetic fields. In this context, a new experimental protocol is described, in which electron spins in a ferromagnetic material are redirected at the unprecedented level in cooperation with the enhanced THz magnetic field. Subsequently, the author demonstrates that the THz magnetic field is significantly amplified as a nearfield around the SRR structured metamaterial, which is implemented by measuring spin precession in a solid. At the end, the author presents the key experiment in which the amplified THz magnetic nearfield is applied to the weak ferromagnet ErFeO3 along with the femtosecond near-infrared pulse, demonstrating the successful control of symmetry breaking of the spin system due to coherent control of the optically-induced spin reorientation phase transition pathways. The comprehensive introductory review in this book allows readers to overview state-of-the-art terahertz spectroscopic techniques. In addition, the skillful description of the experiments is highly informative for readers in ultrafast magnonics, ultrafast optics, terahertz technology and plasmonic science.
In Laser Physics the interaction of radiation and matter, and the
principles of laser operation are treated at a level suitable for
fourth-year undergraduate courses or introductory graduate courses
in physics, chemistry or engineering. The factors which determine
efficiency, wavelength coverage, output power, and beam quality of
the different classes of laser are treated both in terms of
fundamental theory and practical construction aspects. Details of
established types of solid-state, semiconductor, and gas lasers are
examined together with the techniques that enable their output to
be converted widely across the spectrum. The latest advances in
high power fibre lasers, femtosecond lasers, and X-ray lasers are
explained. The text is liberally illustrated with more than 300
diagrams. An extensive bibliography is provided, together with
numerical problems in each chapter. Solutions are available via the
web.
In Laser Physics the interaction of radiation and matter, and the
principles of laser operation are treated at a level suitable for
fourth-year undergraduate courses or introductory graduate courses
in physics, chemistry or engineering. The factors which determine
efficiency, wavelength coverage, output power, and beam quality of
the different classes of laser are treated both in terms of
fundamental theory and practical construction aspects. Details of
established types of solid-state, semiconductor, and gas lasers are
examined together with the techniques that enable their output to
be converted widely across the spectrum. The latest advances in
high power fibre lasers, femtosecond lasers, and X-ray lasers are
explained. The text is liberally illustrated with more than 300
diagrams. An extensive bibliography is provided, together with
numerical problems in each chapter. Solutions are available via the
web.
Scientific techniques developed in materials science offer
invaluable information to archaeology, art history, and
conservation. A rapidly growing number of innovative methods, as
well as many established techniques, are constantly being improved
and optimized for the analysis of cultural heritage materials. The
result is that on the one hand more complex problems and questions
can be confronted, but on the other hand the required level of
technical competence is widening the existing cultural gap between
scientists and end users, such as archaeologists, museum curators,
art historians, and many managers of cultural heritage who have a
purely humanistic background.
This book introduces the fundamentals of biobanking and guides through the practical planning thereof, with a special focus on the situation in low- and middle-income countries. On the example of the setup of a Ukrainian biobank the book discusses the main steps and aspects of successful biorepository implementation and management. Topics covered include collection, storage and shipping of samples, establishment of an IT system, development of a sustainability plan, and project and risk management. Furthermore, the importance of the formation of international biobanking societies such as the Ukraine Association of Biobanks is highlighted, and their main objectives and tasks are discussed.The book addresses life science and business professionals as well as national authorities who are interested in biobanking in general and in setting up a biobank in particular.
Acoustic microscopy enables the elastic properties of materials to be imaged and measured with the resolution of a good microscope. By using frequencies in the microwave regime, it is possible to make the acoustic wavelength comparable with the wavelength of light, and hence to achieve a resolution comparable with an optical microscope. Solids can support both longitudinal and transverse acoustic waves. At surfaces a unique combination of the two known as Raleigh waves can propagate, and in many circumstances these dominate the contrast in acoustic microscopy. Following the invention of scanning probe microscopes, it is now possible to use an atomic force microscope to detect the acoustic vibration of a surface with resolution in the nanometre range, thus beating the diffraction limit by operating in the extreme near-field. This second edition of Acoustic Microscopy has a major new chapter on the technique and applications of acoustically excited probe microscopy.
This new book aims to guide both the experimentalist and theoretician through their compulsory laboratory courses forming part of an undergraduate physics degree. The rationale behind this book is to show students and interested readers the value and beauty within a carefully planned and executed experiment, and to help them to develop the skills to carry out experiments themselves.
Handbook of Radioactivity Analysis: Radiation Physics and Detectors, Volume One, and Radioanalytical Applications, Volume Two, Fourth Edition, constitute an authoritative reference on the principles, practical techniques and procedures for the accurate measurement of radioactivity - everything from the very low levels encountered in the environment, to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, and fuel cycle facilities, and in the implementation of nuclear forensic analysis and nuclear safeguards. It includes sample preparation techniques for all types of matrices found in the environment, including soil, water, air, plant matter and animal tissue, and surface swipes. Users will find the latest advances in the applications of radioactivity analysis across various fields, including environmental monitoring, radiochemical standardization, high-resolution beta imaging, automated radiochemical separation, nuclear forensics, and more.
A sweeping tour of the infrared universe as seen through the eyes of NASA's Spitzer Space Telescope Astronomers have been studying the heavens for thousands of years, but until recently much of the cosmos has been invisible to the human eye. Launched in 2003, the Spitzer Space Telescope has brought the infrared universe into focus as never before. Michael Werner and Peter Eisenhardt are among the scientists who worked for decades to bring this historic mission to life. Here is their inside story of how Spitzer continues to carry out cutting-edge infrared astronomy to help answer fundamental questions that have intrigued humankind since time immemorial: Where did we come from? How did the universe evolve? Are we alone? In this panoramic book, Werner and Eisenhardt take readers on a breathtaking guided tour of the cosmos in the infrared, beginning in our solar system and venturing ever outward toward the distant origins of the expanding universe. They explain how astronomers use the infrared to observe celestial bodies that are too cold or too far away for their light to be seen by the eye, to conduct deep surveys of galaxies as they appeared at the dawn of time, and to peer through dense cosmic clouds that obscure major events in the life cycles of planets, stars, and galaxies. Featuring many of Spitzer's spectacular images, More Things in the Heavens provides a thrilling look at how infrared astronomy is aiding the search for exoplanets and extraterrestrial life, and transforming our understanding of the history and evolution of our universe.
"Fundamentals of Light Microscopy and Electronic Imaging, Second Edition" provides a coherent introduction to the principles and applications of the integrated optical microscope system, covering both theoretical and practical considerations. It expands and updates discussions of multi-spectral imaging, intensified digital cameras, signal colocalization, and uses of objectives, and offers guidance in the selection of microscopes and electronic cameras, as well as appropriate auxiliary optical systems and fluorescent tags.The book is divided into three sections covering optical principles in diffraction and image formation, basic modes of light microscopy, and components of modern electronic imaging systems and image processing operations. Each chapter introduces relevant theory, followed by descriptions of instrument alignment and image interpretation. This revision includes new chapters on live cell imaging, measurement of protein dynamics, deconvolution microscopy, and interference microscopy. PowerPoint slides of the figures as well as other supplementary materials for instructors are available at a companion website: www.wiley.com/go/murphy/lightmicroscopy
A bestseller for nearly 25 years, Analysis of Messy Data, Volume 1: Designed Experiments helps applied statisticians and researchers analyze the kinds of data sets encountered in the real world. Written by two long-time researchers and professors, this second edition has been fully updated to reflect the many developments that have occurred since the original publication. New to the Second Edition Several modern suggestions for multiple comparison procedures Additional examples of split-plot designs and repeated measures designs The use of SAS-GLM to analyze an effects model The use of SAS-MIXED to analyze data in random effects experiments, mixed model experiments, and repeated measures experiments The book explores various techniques for multiple comparison procedures, random effects models, mixed models, split-plot experiments, and repeated measures designs. The authors implement the techniques using several statistical software packages and emphasize the distinction between design structure and the structure of treatments. They introduce each topic with examples, follow up with a theoretical discussion, and conclude with a case study. Bringing a classic work up to date, this edition will continue to show readers how to effectively analyze real-world, nonstandard data sets.
A classic brought up to date with new experiments using the latest
methods.
Cryoelectron microscopy of biological molecules is among the hottest growth areas in biophysics and structural biology at present, and Frank is arguably the most distinguished practitioner of this art. CryoEM is likely over the next few years to take over much of the structural approaches currently requiring X-ray crystallography, because one can now get good and finely detailed images of single molecules down to as little as 200,000 MW, covering a substantial share of the molecules of greatest biomedical research interest. This book, the successor to an earlier work published in 1996 with Academic Press, is a natural companion work to our forthcoming book on electron crystallography by Robert Glaeser, with contributions by six others, including Frank. A growing number of workers will employ CryoEM for structural studies in their own research, and a large proportion of biomedical researchers will have a growing interest in understanding what the capabilities and limits of this approach are.
Combined fields of Microbiology and Nanotechnology have been most successful in providing novel solutions for protecting the health of humans and environment. This book covers the implications of nano-strategies to combat bacterial pathogens, applications of nanotechniques in microbiology, and innovative advances in the area of medical microbiology. Contents are divided into three sections -- Nanoscience in controlling bacterial pathogens, Nanoscience in Microbiology, Medical Microbiology. This volume is going to provide timely information about the technological advances of Nanoscience in the domain of Microbiology, with a special emphasis on Pathobiology. The book is a useful read for students and researchers in microbiology, nanotechnology and medical microbiology. |
![]() ![]() You may like...
Principles and Practice of Modern…
Kevin Robards, P.E. Jackson, …
Hardcover
R1,458
Discovery Miles 14 580
Atomic and Molecular Manipulation…
Andrew J. Mayne, Gerard Dujardin
Hardcover
R3,644
Discovery Miles 36 440
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,894
Discovery Miles 28 940
Molecular Imaging - FRET Microscopy and…
Ammasi Periasamy, Richard Day
Hardcover
R2,867
Discovery Miles 28 670
Atomic Force Microscopy in Process…
Richard Bowen, Nidal Hilal
Hardcover
R3,659
Discovery Miles 36 590
Medical Microscopy - a Guide to the Use…
Frank Joesph 1860-1928 Wethered
Hardcover
R1,072
Discovery Miles 10 720
The Future of the History of Chemical…
Leah Rae Mcewen, Robert E. Buntrock
Hardcover
R5,821
Discovery Miles 58 210
Inquiry-Based Experiments in Chemistry
Valerie Ludwig Lechtanski
Hardcover
R1,010
Discovery Miles 10 100
|