![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment
Microscopy, which has served as a fundamental scientific technique for centuries, remains an invaluable tool in chemistry, biology, healthcare, and forensics. Increasingly, it is being integrated into modern chemical instrumentation and is of value as a powerful analytical tool across many scientific disciplines. Designed to serve as a primary resource for undergraduate or graduate students, An Introduction to Microscopy helps students master the foundational principles of microscopy. Intentionally concise, this text does not attempt to cover all aspects of all types of microscopy such as polarizing light and fluorescence. Instead, the authors' intent is to provide students with the basic knowledge necessary to explore and understand these more advanced techniques. The authors draw from their own extensive backgrounds in forensic identification to explain the methods and ways in which microscopy shapes every investigation. All nine chapters include questions and most include simple exercises related to the material covered. Numerous figures and photographs supplement the text and explain the procedures and principles introduced. A glossary is included as well as a convenient list of abbreviations, and references to more in-depth readings. Offers a Fundamental Approach for Students in all Fields The material assumes basic mathematics skill through algebra and a basic knowledge of fundamental chemistry and physics (essential for understanding optics). Although the authors used the high-quality microscopes found in their laboratories to produce the images found in the book, the information and methods can be applied to any type of microscope to which students have access. Understanding the fundamentals of microscopy provides students with a relevant and marketable skill that can be readily applied in many fields, even if the students have not had significant academic training in the subject. Furthermore, by understanding various aspects of microscopy, students will begin to understand the science behind other related areas, such as spectroscopy, optics, and any number of applications involving analytical instrumentation.
These essays draw on recent and versatile work by museum staff, science educators, and teachers, showing what can be done with historical scientific instruments or replicas. Varied audiences - with members just like you - can be made aware of exciting aspects of history, observation, problem-solving, restoration, and scientific understanding, by the projects outlined here by professional practitioners. These interdisciplinary case studies, ranging from the cinematic to the hands-on, show how inspiration concerning science and the past can give intellectual pleasure as well as authentic learning to new participants, who might include people like you: students, teachers, curators, and the interested and engaged public. Contributors are Dominique Bernard, Paolo Brenni, Roland Carchon, Elizabeth Cavicchi, Stephane Fischer, Peter Heering, J.W. Huisman, Francoise Khantine-Langlois, Alistair M. Kwan, Janet Laidla, Pierre Lauginie, Panagiotis Lazos, Pietro Milici, Flora Paparou, Frederique Plantevin, Julie Priser, Alfonso San-Miguel, Danny Segers, Constantine (Kostas) Skordoulis, Trienke M. van der Spek, Constantina Stefanidou, and Giorgio Strano.
This book is a special edition, compiled for to the MSc Course Research Methodologies as taught at the Faculty of Aerospace Engineering at Delft University of Technology. It is a compilation of useful chapters from several sources on how to structure, set up, carry out and write up your (thesis) research to aid you in writing your research plan. Next to that it acts as a companion during your thesis research. After introducing you to the philosophy of scientific research, subsequent chapters each contribute to the different phases of your research. The book uniquely allows for the often multi- or interdisciplinary research many of you carry out, based on the established Dutch university tradition of (semi-)independent student research, creating a thread through the process for you to follow. This edition is a collection of chapters from An Introduction to Interdisciplinary Research (2016), edited by Steph Menken and Machiel Keestra, and Academic Skills for Interdisciplinary Studies. Revised edition (2019), by Koen van der Gaast, Laura Koenders and Ger Post, published by Amsterdam University Press.
This technology has proved indispensable as a characterization tool with applications in surface physics, chemistry, materials science, bio-science, and data storage media. It has also shown great potential in areas such as the semiconductor and optical quality control industries. This revised edition updates the earlier such survey of the many rapidly developing subjects concerning the mapping of a variety of forces across surfaces, including basic theory, instrumentation, and applications. It also includes important new research in SFM and a thoroughly revised bibliography. Academic and industrial researchers using SFM or wishing to know more about its potential, will find this book an excellent introduction to this rapidly developing field.
A detailed presentation of the physics of electron beam-specimen interactions Electron microscopy is one of the most widely used characterisation techniques in materials science, physics, chemistry, and the life sciences. This book examines the interactions between the electron beam and the specimen, the fundamental starting point for all electron microscopy. Detailed explanations are provided to help reinforce understanding, and new topics at the forefront of current research are presented. It provides readers with a deeper knowledge of the subject, particularly if they intend to simulate electron beam-specimen interactions as part of their research projects. The book covers the vast majority of commonly used electron microscopy techniques. Some of the more advanced topics (annular bright field and dopant atom imaging, atomic resolution chemical analysis, band gap measurements) provide additional value, especially for readers who have access to advanced instrumentation, such as aberration-corrected and monochromated microscopes. Electron Beam-Specimen Interactions and Simulation Methods in Microscopy offers enlightening coverage of: the Monte-Carlo Method; Multislice Simulations; Bloch Waves in Conventional and Analytical Transmission Electron Microscopy; Bloch Waves in Scanning Transmission Electron Microscopy; Low Energy Loss and Core Loss EELS. It also supplements each chapter with clear diagrams and provides appendices at the end of the book to assist with the pre-requisites. A detailed presentation of the physics of electron beam-specimen interactions Each chapter first discusses the background physics before moving onto simulation methods Uses computer programs to simulate electron beam-specimen interactions (presented in the form of case studies) Includes hot topics brought to light due to advances in instrumentation (particularly aberration-corrected and monochromated microscopes) Electron Beam-Specimen Interactions and Simulation Methods in Microscopy benefits students undertaking higher education degrees, practicing electron microscopists who wish to learn more about their subject, and researchers who wish to obtain a deeper understanding of the subject matter for their own work.
Spark scientific curiosity from a young age with this six-level course through an enquiry-based approach and active learning. Collins International Primary Science fully meets the requirements of the Cambridge Primary Science Curriculum Framework from 2020 and has been carefully developed for a range of international contexts. The course is organised into four main strands: Biology, Chemistry, Physics and Earth and Space and the skills detailed under the 'Thinking and Working Scientifically' strand are introduced and taught in the context of those areas. For each Teacher's Guide at Stages 1 to 6, we offer: A comprehensive Teacher's Guide is easy to follow with a clear and consistent lesson plan layout, including built in continuous assessment The Teacher's Guide Plus ebook includes components such as slideshows, video clips, additional photographs and interactive activities Earth and Space content covers the new curriculum framework Thinking and Working Scientifically deepens and enhances the delivery of Science skills Includes practical activities that don't require specialist equipment or labs Scaffolding allows students of varying abilities to work with common content and meet learning objectives Supports Cambridge Global Perspectives (TM) with activities that develop and practise key skills Provides teacher support as part of a set of resources for the Cambridge Primary Science curriculum framework (0097) from 2020 This series is endorsed by Cambridge Assessment International Education to support the new curriculum framework 0097 from 2020.
Prudent Practices in the Laboratory-the book that has served for decades as the standard for chemical laboratory safety practice-now features updates and new topics. This revised edition has an expanded chapter on chemical management and delves into new areas, such as nanotechnology, laboratory security, and emergency planning. Developed by experts from academia and industry, with specialties in such areas as chemical sciences, pollution prevention, and laboratory safety, Prudent Practices in the Laboratory provides guidance on planning procedures for the handling, storage, and disposal of chemicals. The book offers prudent practices designed to promote safety and includes practical information on assessing hazards, managing chemicals, disposing of wastes, and more. Prudent Practices in the Laboratory will continue to serve as the leading source of chemical safety guidelines for people working with laboratory chemicals: research chemists, technicians, safety officers, educators, and students. Table of Contents Front Matter 1 The Culture of Laboratory Safety 2 Environmental Health and Safety Management System 3 Emergency Planning 4 Evaluating Hazards and Assessing Risks in the Laboratory 5 Management of Chemicals 6 Working with Chemicals 7 Working with Laboratory Equipment 8 Management of Waste 9 Laboratory Facilities 10 Laboratory Security 11 Safety Laws and Standards Pertinent to Laboratories Bibliography APPENDIXES Appendix A: OSHA Laboratory Standard Appendix B: Statement of Task Appendix C: Committee Member Biographies Index
This is a practical book for health and IT professionals who need to ensure that patient safety is prioritized in the design and implementation of clinical information technology. Healthcare professionals are increasingly reliant on information technology to deliver care and inform their clinical decision making. Health IT provides enormous benefits in efficiency, communication and decision making. However a number of high-profile UK and US studies have concluded that when Health IT is poorly designed or sub-optimally implemented then patient safety can be compromised. Manufacturers and healthcare organizations are increasingly required to demonstrate that their Health IT solutions are proactively assured. Surprisingly the majority of systems are not subject to regulation so there is little in the way of practical guidance as to how risk management can be achieved. The book fills that gap. The author, a doctor and IT professional, harnesses his two decades of experience to characterize the hazards that health technology can introduce. Risk can never be eliminated but by drawing on lessons from other safety-critical industries the book systematically sets out how clinical risk can be strategically controlled. The book proposes the employment of a Safety Case to articulate and justify residual risk so that not only is risk proactively managed but it is seen to be managed. These simple techniques drive product quality and allow a technology's benefits to be realized without compromising patient safety.
Developments in cryo-electron microscopy are creating new opportunities within structural biology and there is currently great interest in developing cryo-EM as a core tool for atomic level structural biology. Many structural techniques can give atomic or near atomic level information, but lack the ability to study proteins within a near-native environment, for example within a cellular compartment. Cryo-EM provides this opportunity, but despite the recent massive improvements in single particle cryo-EM, obtaining sub-2A structural information is still a major challenge. Cryo-electron microscopy has undergone significant developments in microscope design, camera technology and data processing regimes, but there are significant challenges that remain and opportunities to explore, many of which must be tackled by the community as a whole, rather than by individual groups. For example, sample preparation is central to electron microscopy and is currently a significant bottleneck in many experiments, and there are significant problems with ensuring the integrity of the field in terms of dealing with inherently low signal-to-noise images. This volume brings together leading researchers from the UK and the international cryo-electron microscopy community to discuss current developments and new challenges in the field. In this volume the topics covered include: Sample preparation in single particle cryo-EM Pushing the limits in single particle cryo-EM Tomographic analysis, CLEM Map/model validation and machine learning in EM
This updated volume provides stepwise instructions for the analysis of numerous clinically important analytes by mass spectrometry. Mass spectrometry offers clinical laboratory scientists a number of advantages including increased sensitivity and specificity, multiple component analysis, and limited need for specialized reagents. These techniques are essential in laboratory fields including endocrinology, biochemical genetics, drug analysis, proteomics, and pathogen identification. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Clinical Applications of Mass Spectrometry in Biomolecular Analysis: Methods and Protocols, Second Edition is an ideal resource for clinical laboratory scientists who are already using or thinking of bringing mass spectrometry to their laboratories.
REVIEWS IN COMPUTATIONAL CHEMISTRY Kenny B. Lipkowitz, Raima Larter, and Thomas R. Cundari This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. TOPICS COVERED IN Volume 21 iNCLUDE AB INITIO QUANTUM SIMULATION IN SOLID STATE CHEMISTRY; MOLECULAR QUANTUM SIMILARITY; ENUMERATING MOLECULES; VARIABLE SELECTION; BIOMOLECULAR APPLICATIONS OF POISSON-BOLTZMANN METHODS; AND DATA SOURCES AND COMPUTATIONAL APPROACHES FOR GENERATING MODELS OF GENE REGULATORY NETWORKS. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable
reference to methods and techniques in computational
chemistry." "One cannot generally do better than to try to find an
appropriate article in the highly successful Reviews in
Computational Chemistry. The basic philosophy of the editors seems
to be to help the authors produce chapters that are complete,
accurate, clear, and accessible to experimentalists (in particular)
and other nonspecialists (in general)."
Comparing and contrasting the reality of subjectivity in the work of history’s great scientists and the modern Bayesian approach to statistical analysis Scientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data–and these subjective influences have often aided in humanity’s greatest scientific achievements. The authors argue that subjectivity has not only played a significant role in the advancement of science, but that science will advance more rapidly if the modern methods of Bayesian statistical analysis replace some of the classical twentieth-century methods that have traditionally been taught. To accomplish this goal, the authors examine the lives and work of history’s great scientists and show that even the most successful have sometimes misrepresented findings or been influenced by their own preconceived notions of religion, metaphysics, and the occult, or the personal beliefs of their mentors. Contrary to popular belief, our greatest scientific thinkers approached their data with a combination of subjectivity and empiricism, and thus informally achieved what is more formally accomplished by the modern Bayesian approach to data analysis. Yet we are still taught that science is purely objective. This innovative book dispels that myth using historical accounts and biographical sketches of more than a dozen great scientists, including Aristotle, Galileo Galilei, Johannes Kepler, William Harvey, Sir Isaac Newton, Antoine Levoisier, Alexander von Humboldt, Michael Faraday, Charles Darwin, Louis Pasteur, Gregor Mendel, Sigmund Freud, Marie Curie, Robert Millikan, Albert Einstein, Sir Cyril Burt, and Margaret Mead. Also included is a detailed treatment of the modern Bayesian approach to data analysis. Up-to-date references to the Bayesian theoretical and applied literature, as well as reference lists of the primary sources of the principal works of all the scientists discussed, round out this comprehensive treatment of the subject. Readers will benefit from this cogent and enlightening view of the history of subjectivity in science and the authors’ alternative vision of how the Bayesian approach should be used to further the cause of science and learning well into the twenty-first century.
This book covers fundamental microscopic techniques for Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and other microscopic tools. It provides step-by-step instructions and explanations of the basic fundamental concepts and mechanisms and guides the reader on resolving queries related to taking and analyzing microscopy images. The latest advancements and developments in microscopic equipment are described. Theoretical background on microscopy is also provided to enhance the reader's understanding of microscopy techniques and tools. Microscopic Techniques for the Non-Expert is an ideal book for undergraduate and postgraduate students, as well as researchers with a background in environmental science, materials science, biomedicine, engineering, or bio-nanotechnology.
This volume details methods on several aspects of circadian research. Chapters guide readers through the latest techniques and a wide variety of daily rhythmic processes, model organisms, circadian rhythms in the SCN and in peripheral organs, and describing in vitro systems and in silico methods. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Circadian Regulation: Methods and Protocols aims to be a useful practical guide to researches to help further their study in this field. Chapters 3, 4, 8, and 17 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book constitutes the thoroughly refereed post-conference proceedings of the 10th International Conference on Large-Scale Scientific Computations, LSSC 2015, held in Sozopol, Bulgaria, in June 2015. The 49 revised full papers presented were carefully reviewed and selected from 64 submissions. The general theme for LSSC 2015 was Large-Scale Scientific Computing with a particular focus on the organized special sessions: enabling exascale computation; control and uncertain systems; computational microelectronics - from monte carlo to deterministic approaches; numerical methods for multiphysics problems; large-scale models: numerical methods, parallel computations and applications; mathematical modeling and analysis of PDEs describing physical problems; a posteriori error control and iterative methods for maxwell type problems; efficient algorithms for hybrid HPC systems; multilevel methods on graphs; and applications of metaheuristics to large-scale problems.
Biomedical scientists are the foundation of modern healthcare, from cancer screening to diagnosing HIV, from blood transfusion for surgery to food poisoning and infection control. Without biomedical scientists the diagnosis of disease, the evaluation of the effectiveness of treatment, and research into the causes and cures of disease would not be possible. The Fundamentals of Biomedical Science series has been written to reflect the challenges of practicing biomedical science today. It draws together essential basic science with insights into laboratory practice to show how an understanding of the biology of disease is coupled to the analytical approaches that lead to diagnosis. Assuming only a minimum of prior knowledge, the series reviews the full range of disciplines to which a Biomedical Scientist may be exposed-from microbiology to cytopathology to transfusion science. Histopathology describes the processes and practices that are central to the role of the histopathology biomedical scientist, from presampling to diagnosis to laboratory management. It demonstrates throughout how an understanding of cell and tissue physiology is vital to the successful identification of clinical conditions.
Passive acoustic monitoring is increasingly used by the scientific community to study, survey and census marine mammals, especially cetaceans, many of which are easier to hear than to see. PAM is also used to support efforts to mitigate potential negative effects of human activities such as ship traffic, military and civilian sonar and offshore exploration. Walter Zimmer provides an integrated approach to PAM, combining physical principles, discussion of technical tools and application-oriented concepts of operations. Additionally, relevant information and tools necessary to assess existing and future PAM systems are presented, with Matlab code used to generate figures and results so readers can reproduce data and modify code to analyse the impact of changes. This allows the principles to be studied whilst discovering potential difficulties and side effects. Aimed at graduate students and researchers, the book provides all information and tools necessary to gain a comprehensive understanding of this interdisciplinary subject.
Dealing with the intermolecular Diels-Alder reaction, this book focuses on one of the reactants, the diene. The first chapter deals with the fundamental principles of the reaction. The remaining five chapters describe the salient features of the different classes of dienes and report a great deal of tabulated data and literary references. In the tables, the dienes and dienophiles are ordered in such a way that the reader can easily find the dienophile and the cycloaddition reactions which are of interest to him or her. The book should be a valuable tool for students and for academic and industrial researchers working in the field of organic synthesis.
Originally published in 1941, this book seeks to inform the scientific community of the possible uses of photography in research or teaching. Lawrence gives an account of the possibilities and limitations of the medium for the scientific reader as well as for the 'serious amateur', explains the various mechanisms of the camera and gives some suggestions for scientific applications, such as high-speed photography. This book will be of value to anyone with an interest in photography or the history of science.
Written for animal researchers, this book provides a comprehensive guide to the design and statistical analysis of animal experiments. It has long been recognised that the proper implementation of these techniques helps reduce the number of animals needed. By using real-life examples to make them more accessible, this book explains the statistical tools employed by practitioners. A wide range of design types are considered, including block, factorial, nested, cross-over, dose-escalation and repeated measures and techniques are introduced to analyse the experimental data generated. Each analysis technique is described in non-mathematical terms, helping readers without a statistical background to understand key techniques such as t-tests, ANOVA, repeated measures, analysis of covariance, multiple comparison tests, non-parametric and survival analysis. This is also the first text to describe technical aspects of InVivoStat, a powerful open-source software package developed by the authors to enable animal researchers to analyse their data and obtain informative results. |
![]() ![]() You may like...
Deaf Culture - Exploring Deaf…
Irene W Leigh, Jean F. Andrews, …
Paperback
R2,559
Discovery Miles 25 590
Disability and Equity in Higher…
Henry C. Alphin Jr., Jennie Lavine, …
Hardcover
R5,280
Discovery Miles 52 800
Occupational Therapy with Older Adults…
Helene Lohman, Amy L Shaffer, …
Hardcover
|