![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment
Positive Pressure Ventilation (PPV) is a tactic that is used on fire grounds across the world everyday, both to improve tenability after the extinguishment of a fire and/or offensively during fire attack to improve firefighting conditions. PPV has proven that it can be a useful tool on the fire ground, but it can also kill or injure fire fighters and civilians if used improperly. Data from three full-scale experiments are compared with simulations completed with the computational fluid dynamic model Fire Dynamic Simulator (FDS). The full-scale experiments characterize a Positive Pressure Ventilation (PPV) fan in an open atmosphere, in a simple room geometry and in a room fire. All experiments qualify and quantify the comparison of the experimental results with the FDS results. A concluding scenario is modeled utilizing the calibration of the full-scale experiments to examine the effects of PPV on a fire in a two-story, colonial style house.
As careers in science have become increasingly demanding, they require much more than a keen scientific mind and practical ability. If you are considering a career in research, have already embarked on your career and want to succeed, are uncertain which route to take or advise, train or supervise scientists, this book offers some helpful advice. Nancy Rothwell, a senior scientist with extensive experience training scientists and communicating with the public, covers topics ranging from choosing a PhD or postdoctoral position, successful interviews and preparing your cv to managing your supervisor; how to give successful talks, publish high quality papers and become known within your field. Broader aspects of science which are so important today are also covered, including ethics and fraud, intellectual property and exploitation and disseminating science to the public.
Purification of Laboratory Chemicals: Part One, Physical Techniques, Chemical Techniques, Organic Chemicals, Ninth Edition describes contemporary methods for the purification of chemical compounds. The work includes tabulated methods taken from literature for purifying thousands of individual commercially available chemical substances. To help in applying this information, the more common processes currently used for purification in chemical laboratories and new methods are discussed. For dealing with substances not separately listed, another chapter is included, setting out the usual methods for purifying specific classes of compounds. Laboratory workers, whether carrying out research or routine work, will invariably need to consult this book. Apart from the procedures described, the large amount of physical data about listed chemicals is essential. This fully updated, revised and expanded new edition includes the purification of many new substances that have been available commercially since 2017, along with previously available substances which have found new applications.
Hands-on experimentalists describe the cutting-edge microscopical methods needed for the effective study of plant cell biology today. These powerful techniques, all described in great detail to ensure successful experimental results, range from light microscope cytochemistry, autoradiography, and immunocytochemistry, to recent developments in fluorescence, confocal, and dark-field microscopies. Important advances in both conventional and scanning electron microscopies are also fully developed, together with such state-of-the-art ancillary techniques as high-resolution autoradiography, immunoelectron microscopy, X-ray microanalysis, and electron systems imaging. Easy-to-use and up-to-date, Methods in Plant Electron Microscopy and Cytochemistry offers today's plant scientists a first class collection of readily reproducible light and electron microscopical methods that will prove the new standard for all working in the field.
There can be no doubt that some ofthe most spectacular advances made in science over the past few decades have been in the isolation, analysis, and manipulation of nucleicacids. Thishas ledtoamuchgreaterunderstandingofmechanismsandprocesses across many fields of bioscience, such as biochemistry, microbiology, physiology, pharmacology, and the medical sciences to name a few. It has also led to the growth of the biotechnology industry, which seeks to develop and commercialize many ofthese important processes and methods. Much ofthis has come about because ofthe devel opment of numerous molecular biology and genetic manipulation techniques. The discovery of restriction enzymes and the development of cloning vectors in the early 1970sopenedthedoortowaysofisolatingandmanipulatingnucleic acidsthathadnever been thought possible. Gene probe labeling and hybridization were developed and refined toprovidepowerfulmethodsofanalysis. These-togetherwiththedevelopment of DNA sequencing methods, protein engineering techniques, and PeR-have all continued to contribute substantially to the understandingofbiological processes at the molecular level. Theprotocols for these importantmethods are the focus ofThe Nucleic AcidProtocols Handbook, whose aim is to provide a comprehensive set oftechniques in onevolume thatwill enable the isolation, analysis, and manipulationofnucleic acids to be readily undertaken. The NucleicAcidProtocols Handbook is divided into 10 parts; within each there are approximately 10chapters. The first fourpartsfollow oneanotherlogically: nucleic acid extraction (Part I), basic separation and analysisofDNA (II), through probe design and labeling (III), and RNA analysis techniques (IV). The following three sections deal with gene libraryconstruction andscreening(V), DNA sequencing (VI), andthe polymerase chain reaction (VII)."
This invaluable reference handbook describes the fundamental principles and procedures underlying the successful isolation of viable, functionally intact hematopoietic and lymphoid cells, and their maintenance as primary cultures. The text provides technical information on the signals and mediators required for the differentiation and growth of these cells, and is designed for laboratory investigators with limited practical experience in cell culture. Chapters discuss dendritic cells, T and B lymphocytes, monocytes and macrophages, NK and LAK cells, mast cells and basophils, hematopoietic differentiation of embryonal stem cells, and the culturing of murine thymic explants. Each chapter has been written by experts who have practical experience of the techniques discussed to provide tips for avoiding common pitfalls, and sharing insight into the fundamental questions in cell biology and immunology addressed using each cell culture model.
Unrivalled in its coverage and unique in its hands-on approach, this guide to the design and construction of scientific apparatus is essential reading for every scientist and student of engineering, and physical, chemical, and biological sciences. Covering the physical principles governing the operation of the mechanical, optical and electronic parts of an instrument, new sections on detectors, low-temperature measurements, high-pressure apparatus, and updated engineering specifications, as well as 400 figures and tables, have been added to this edition. Data on the properties of materials and components used by manufacturers are included. Mechanical, optical, and electronic construction techniques carried out in the lab, as well as those let out to specialized shops, are also described. Step-by-step instruction supported by many detailed figures, is given for laboratory skills such as soldering electrical components, glassblowing, brazing, and polishing.
High-resolution electron microscopy (HREM) has become a most powerful method for investigating the internal structure of materials on an atomic scale of around 0.1 nm. The authors clearly explain both the theory and practice of HREM for materials science. In addition to a fundamental formulation of the imaging process of HREM, there is detailed explanation of image simulationindispensable for interpretation of high-resolution images. Essential information on appropriate imaging conditions for observing lattice images and structure images is presented, and methods for extracting structural information from these observations are clearly shown, including examples in advanced materials. Dislocations, interfaces, and surfaces are dealt with, and materials such as composite ceramics, high-Tc superconductors, and quasicrystals are also considered. Included are sections on the latest instruments and techniques, such as the imaging plate and quantitative HREM.
Biomedical scientists are the foundation of modern healthcare, from cancer screening to diagnosing HIV, from blood transfusion for surgery to food poisoning and infection control. Without biomedical scientists the diagnosis of disease, the evaluation of the effectiveness of treatment, and research into the causes and cures of disease would not be possible. The Fundamentals of Biomedical Science series has been written to reflect the challenges of practicing biomedical science today. It draws together essential basic science with insights into laboratory practice to show how an understanding of the biology of disease is coupled to the analytical approaches that lead to diagnosis. Assuming only a minimum of prior knowledge, the series reviews the full range of disciplines to which a Biomedical Scientist may be exposed-from microbiology to cytopathology to transfusion science. Histopathology describes the processes and practices that are central to the role of the histopathology biomedical scientist, from presampling to diagnosis to laboratory management. It demonstrates throughout how an understanding of cell and tissue physiology is vital to the successful identification of clinical conditions.
Designed with the non-specialist teacher in mind, the emphasis of this book is to provide them with the confidence, flair and enthusiasm to teach chemistry at KS3 or KS4. Provision of 80 experiments to inspire and engage the students, practical help with the experiments and health and safety guidance means the teacher has all the tools they might require when improving the teaching of chemistry. Originally developed as course material for the Royal Society of Chemistry (RSC) Chemistry for Non-Specialist course, organised in collaboration with the national network of Science Learning Centres (SLCs) and supported by an unrestricted educational grant from GlaxoSmithKline (GSK), the resources are tried and tested and known to be effective. The course book is accompanied by a CD-ROM and together they make a valuable addition to the educational resources and aids for non-specialist teachers teaching chemistry.
This handy reference handbook describes the fundamental principles and procedures underlying the successful isolation of viable, functionally-intact cells from mammalian endocrine tissues, and their maintenance as primary cultures. The cell types selected for coverage illustrate the diversity of endocrine tissues from which cells have been isolated, and the range of procedures which have been devised to ensure the optimal survival and behaviour of each cell type under study. Particular emphasis has been placed on the provision of detailed protocols describing, step by step, the manipulations necessary to establish differentiated and responsive cultures. The chapters have been prepared by authors having direct practical experience of the cell type concerned, and the reader is therefore provided with first-hand accounts on the background to each procedure, the avoidance of potential problems and pitfalls, and the fundamental questions in endocrinology which may be addressed using each cell culture model.
This handy reference handbook describes the fundamental principles and procedures underlying the successful isolation of viable, functionally-intact cells from mammalian endocrine tissues, and their maintenance as primary cultures. The cell types selected for coverage illustrate the diversity of endocrine tissues from which cells have been isolated, and the range of procedures which have been devised to ensure the optimal survival and behaviour of each cell type under study. Particular emphasis has been placed on the provision of detailed protocols describing, step by step, the manipulations necessary to establish differentiated and responsive cultures. The chapters have been prepared by authors having direct practical experience of the cell type concerned, and the reader is therefore provided with first-hand accounts on the background to each procedure, the avoidance of potential problems and pitfalls, and the fundamental questions in endocrinology which may be addressed using each cell culture model.
This book is the first synthesis of the practice and the philosophy of the scientific method. It offers scientists a deeper understanding of the underpinnings of the scientific method, thereby leading to more productive research and experimentation. It also provides a greater perspective on the rationality of the scientific approach and its role in society. Topics relevant to a variety of disciplines are treated, and clarifying figures, case studies, and chapter summaries enhance the pedagogy.
Science teachers come in many varieties, but they share a common goal: to nurture learners. Over the past decade, we have learned a great deal about how to do this effectively. Of all this new (and some not so new) knowledge, what strikes me as most important is that learning occurs best within a context. Still, as obvious as that may seem, it is relatively rare in our high school science classrooms. The problem, of course, is that it is not easy to create a learning experience with hands-on relevance to the science under discussion. Science teachers, in addition to not having the the time, for the most part do not have the expertise or readily available resources. The solution lies in finding ways to bring scientists into the teaching/learning equation. Scientists teamed with teachers and their students represent a very real and rich opportunity to involve students in real science as practiced. Imagine a research book that gives examples of honest, science-research experiences for science-oriented students. What's more, imagine a book that includes examples where students are collaborating with scientists from all over the world on research projects, in person or via the Internet. Internet Linksfor Science Education does just that. It explores the role of the Internet and technol ogy in working student-scientist partnerships.
In Vitro Culture of Higher Plants presents an up-to-date and wide- ranging account of the techniques and applications, and has primarily been written in response to practical problems. Special attention has been paid to the educational aspects. Typical methodological aspects are given in the first part: laboratory set-up, composition and preparation of media, sterilization of media and plant material, isolation and (sub)culture, mechanization, the influence of plant and environmental factors on growth and development, the transfer from test-tube to soil, aids to study. The question of why in vitro culture is practised is covered in the second part: embryo culture, germination of orchid seeds, mericloning of orchids, production of disease-free plants, vegetative propagation, somaclonal variation, test-tube fertilization, haploids, genetic manipulation, other applications in phytopathology and plant breeding, secondary metabolites.
This 1993 book gives a comprehensive account of both experimental and theoretical aspects of electron microprobe analysis, and is an extensively updated version of the seminal first edition, published in 1975. The design and operation of the instrument, including the electron column and both wavelength- and energy-dispersive X-ray spectrometers, are covered in the first part of the book. Experimental procedures for qualitative and quantitative analysis, using both types of spectrometer, are then discussed. Matrix ('ZAF') corrections, as required for quantitative analysis, are treated in some detail from both theoretical and practical viewpoints. Special considerations applying to the analysis of 'light' elements (atomic number below 10) are covered in a separate chapter. The emphasis throughout is on a sound understanding of principles and the treatment is applicable equally to the electron microprobe in its 'classical' form and to scanning electron microscopes fitted with X-ray spectrometers.
The aim of the Handbooks in Practical Animal Cell Biology is to provide practical workbooks for those involved in primary cell culture. Each volume addresses a different cell lineage, and contains an introductory section followed by individual chapters on the culture of specific differentiated cell types. The authors of each chapter are leading researchers in their fields and use their first-hand experience to present reliable techniques in a clear and thorough manner. Epithelial Cell Culture contains chapters on epithelial cells derived from 1) airway, 2) intestine, 3) pancreas, 4) kidney and bladder, 5) genital ducts, 6) mammary glands, 7) skin glands and appendages, and 8) keratinocytes.
The aim of the Handbooks in Practical Animal Cell Biology is to provide practical workbooks for those involved in primary cell culture. Each volume addresses a different cell lineage, and contains an introductory section followed by individual chapters on the culture of specific differentiated cell types. The authors of each chapter are leading researchers in their fields and use their first-hand experience to present reliable techniques in a clear and thorough manner. Epithelial Cell Culture contains chapters on epithelial cells derived from 1) airway, 2) intestine, 3) pancreas, 4) kidney and bladder, 5) genital ducts, 6) mammary glands, 7) skin glands and appendages, and 8) keratinocytes.
The aim of the Handbooks in Practical Animal Cell Biology is to provide practical workbooks for those involved in primary cell culture. Each volume addresses a different cell lineage, and contains an introductory section followed by individual chapters on the culture of specific differentiated cell types. The authors of each chapter are leading researchers in their fields and use their first-hand experience to present reliable techniques in a clear and thorough manner. Endothelial Cell Culture contains chapters on endothelial cells derived from 1) lung, 2) bone marrow, 3) brain, 4) mammary glands, 5) skin, 6) adipose tissue, 7) female reproductive system, and 8) synovium.
The first book to chronicle how innovation in laboratory designs for botanical research energized the emergence of physiological plant ecology as a vibrant subdiscipline  Laboratory innovation since the mid-twentieth century has powered advances in the study of plant adaptation, evolution, and ecosystem function. The phytotron, an integrated complex of controlled-environment greenhouse and laboratory spaces, invented by Frits W. Went in the 1950s, set off a worldwide laboratory movement and transformed the plant sciences. Sharon Kingsland explores this revolution through a comparative study of work in the United States, France, Australia, Israel, the USSR, and Hungary.  These advances in botanical research energized physiological plant ecology. Case studies explore the development of phytotron spinoffs such as mobile laboratories, rhizotrons, and ecotrons. Scientific problems include the significance of plant emissions of volatile organic compounds, symbiosis between plants and soil fungi, and the discovery of new pathways for photosynthesis as an adaptation to hot, dry climates. The advancement of knowledge through synthesis is a running theme: linking disciplines, combining laboratory and field research, and moving across ecological scales from leaf to ecosystem. The book also charts the history of modern scientific responses to the emerging crisis of food insecurity in the era of global warming.
The investigation and manipulation of matter on the atomic scale have been revolutionized by scanning tunneling microscopy and related scanning probe techniques. This book is the first to provide a clear and comprehensive introduction to this subject. Beginning with the theoretical background of scanning tunneling microscopy, the design and instrumentation of practical STM and associated systems are described in detail, including topographic imaging, local tunneling barrier height measurements, tunneling spectroscopy, and local potentiometry. A treatment of the experimental techniques used in scanning force microscopy and other scanning probe techniques rounds out this section. The second part discusses representative applications of these techniques in fields such as condensed matter physics, chemistry, materials science, biology, and nanotechnology, so this book will be extremely valuable to upper-division students and researchers in these areas.
A renowned philosopher's final work, illuminating how the logical empiricist tradition has failed to appreciate the role of actual experiments in forming its philosophy of science. The logical empiricist treatment of physics dominated twentieth-century philosophy of science. But the logical empiricist tradition, for all it accomplished, does not do justice to the way in which empirical evidence functions in modern physics. In his final work, the late philosopher of science William Demopoulos contends that philosophers have failed to provide an adequate epistemology of science because they have failed to appreciate the tightly woven character of theory and evidence. As a consequence, theory comes apart from evidence. This trouble is nowhere more evident than in theorizing about particle and quantum physics. Arguing that we must consider actual experiments as they have unfolded across history, Demopoulos provides a new epistemology of theories and evidence, albeit one that stands on the shoulders of giants. On Theories finds clarity in Isaac Newton's suspicion of mere "hypotheses." Newton's methodology lies in the background of Jean Perrin's experimental investigations of molecular reality and of the subatomic investigations of J. J. Thomson and Robert Millikan. Demopoulos extends this account to offer novel insights into the distinctive nature of quantum reality, where a logico-mathematical reconstruction of Bohrian complementarity meets John Stewart Bell's empirical analysis of Einstein's "local realism." On Theories ultimately provides a new interpretation of quantum probabilities as themselves objectively representing empirical reality.
The functional anatomy of human somatosensory cortex is of both scientific and clinical interest. Scientifically, it provides insights in information processing in the human brain. Clinically, it helps to avoid neurological deficits by sparing essential brain regions during neurosurgical procedures adjacent to central fissure. In the present study the functional organization of the human somatosensory cortex was investigated with electrophysiological techniques using a combined approach of cortical stimulations and somatosensory evoked responses on electrocorticography, scalp-EEG, and magnetoencephalography. The spatiotemporal structure of the evoked response was studiedwith biophysical modeling techniqueswhich allowed identification of the three-dimensional intracerebral location, time activity, and interaction of the neuronal sources activated following peripheral somatosensory stimulation. Furthermore, the somatotopic organization ofhand and lip somatosensory cortex was investigated. The relative value of invasive (cortical stimulations and electrocorticography) and non-invasive (scalp-EEGand magnetoencephalography) was assessed. The combined use ofscalp-EEG and magnetoencephalography was useful to increase non-invasive localization accuracy. I want to thank several people who significantly contributed in completion of the present work. Univ. -Prof Dr. Luder Deecke, Chairman of the Neurological University Clinic, Vienna, Austria, supported me throughout my career at the Neurological University Clinic in Vienna since 1985. Dr. William W Sutherling, Associate Professor at the University of California, Los Angeles, who was my advisor during my stay from 1987-1989 at the Department ofNeurology, University of California, Los Angeles where most of the present work was done.
The compound optical microscope, in its various modern forms, is probably the most familiar of all laboratory instruments and the electron microscope, once an exotic rarity, has now become a standard tool in biological and materials research. Both instruments are often used effectively with little knowledge of the relevant theory, or even of how a particular type of microscope functions. Eventually however, proper use, interpretation of images and choices of specific applications demand an understanding of fundamental principles. This book describes the principles of operation of each type of microscope currently available and of use to biomedical and materials scientists. It explains the mechanisms of image formation, contrast and its enhancement, accounts for ultimate limits on the size of observable details (resolving power and resolution) and finally provides an account of Fourier optical theory. Principles behind the photographic methods used in microscopy are also described and there is some discussion of image processing methods. The book will appeal to graduate students and researchers in the biomedical sciences, and it will be helpful to students taking a course involving the principles of microscopy.
A unique introduction to the design, analysis, and presentation of scientific projects, this is an essential textbook for undergraduate majors in science and mathematics. The textbook gives an overview of the main methods used in scientific research, including hypothesis testing, the measurement of functional relationships, and observational research. It describes important features of experimental design, such as the control of errors, instrument calibration, data analysis, laboratory safety, and the treatment of human subjects. Important concepts in statistics are discussed, focusing on standard error, the meaning of p values, and use of elementary statistical tests. The textbook introduces some of the main ideas in mathematical modeling, including order-of-magnitude analysis, function fitting, Fourier transforms, recursion relations, and difference approximations to differential equations. It also provides guidelines on accessing scientific literature, and preparing scientific papers and presentations. An extensive instructor's manual containing sample lessons and student papers is available at www.cambridge.org/Marder. |
![]() ![]() You may like...
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
Chiral Separations by Capillary…
Ann Van Eeckhaut, Yvette Michotte
Paperback
R2,120
Discovery Miles 21 200
|