![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment
This book discusses fundamentally new biomedical imaging methods, such as holography, holographic and resonant interferometry, and speckle optics. It focuses on the development of holographic interference microscopy and its use in the study of phase objects such as nerve and muscle fibers subjected to the influence of laser radiation, magnetic fields, and hyperbaric conditions. The book shows how the myelin sheath and even the axon itself exhibit waveguide properties, enabling a fresh new look at the mechanisms of information transmission in the human body. The book presents theoretically and experimentally tested holographic and speckle-optical methods and devices used for investigating complex, diffusely scattering surfaces such as skin and muscle tissue. Additionally, it gives broad discussion of the authors' own original fundamental and applied research dedicated to helping physicians introduce new contact-less methods of diagnosis and treatment of diseases of the cardiovascular and neuromuscular systems into medical practice. The book is aimed at a broad spectrum of scientific specialists in the fields of speckle optics, holography, laser physics, morphology and cytochemistry, as well as medical professionals such as physiologists, neuropathologists, neurosurgeons, cardiologists and dentists.
Private landowners or Federal Agencies responsible for cleaning up radiological environments are faced with the challenge of clearly defining the nature and extent of radiological contamination, implementing remedial alternatives, then statistically verifying that cleanup objectives have been met. Sampling and Surveying Radiological Environments provides the how-tos for designing and implementing cost effective and defensible sampling programs in radiological environments, such as those found in the vicinity of uranium mine sites, nuclear weapons production facilities, nuclear reactors, radioactive waste storage and disposal facilities, and nuclear accidents. It includes downloadable resources that walk you through the EPA's Data Quality Objectives(DQO) procedures and provides electronic templates you can complete and print. Sampling and Surveying Radiological Environments addresses all of the major topics that will assist you in designing and implementing statistically defensible sampling programs in radiological environments, including: Summary of the major environmental laws and regulations that apply to radiological sites, and advice on regulatory interfacing * Internet addresses where you can find regulations pertaining to each States Theory of radiation detection and definitions of common radiological terminology Statistics and statistical software that apply to the environmental industry Details on commercially available radiological instrumentation and detection systems Building decontamination and decommissioning, radiological and chemical equipment decontamination procedures, and tank/drum/remote characterization Standard operating procedures for collecting environmental media samples Guidance on sample preparation, documentation, and shipment Guidance on data verification/validation, radiological data management, data quality assessment (DQA)
Toxicology has made tremendous strides in the sophistication of the models used to identify and understand the mechanisms of agents that can harm or kill humans and other higher organisms. Non-animals or in vitro models started to gain significant use in the 1960s. As a result of the increased concern over animal welfare, economic factors, and the need for greater sensitivity and understanding of mechanisms, interest in in vitro models has risen. This volume demonstrates that there now exists a broad range of in vitro models for use in either identifying or understanding most forms of toxicity. The availability of in vitro models spans both the full range of endpoints (irritation, sensitization, lethality, mutagenicity, and developmental toxicity) and the full spectrum of target organ systems (including the skin, eye, heart, liver, kidney and nervous system). Chapters are devoted to each of these speciality areas from a perspective of presenting the principal models and their uses and limitations.
'G. Adams in Fleet Street London' is the signature on some of the finest scientific instruments of the eighteenth century. This book is the first comprehensive study of the instrument-making business run by the Adams family, from its foundation in 1734 to bankruptcy in 1817. It is based on detailed research in the archival sources as well as examination of extant instruments and publications by George Adams senior and his two sons, George junior and Dudley. Separate chapters are devoted to George senior's family background, his royal connections, and his new globes; George junior's numerous publications, and his dealings with van Marum; and to Dudley's dabbling with 'medico-electrical therapeutics'. The book is richly illustrated with plates from the Adams's own publications and with examples of instruments ranging from unique museum pieces - such as the 'Prince of Wales' microscope - and globes to the more common, even mundane, items of the kind seen in salesrooms and dealers - the surveying, navigational and military instruments that formed the backbone of the business. The appendices include facsimiles of trade catalogues and an annotated short-title listing of the Adams family's publications, which also covers American and Continental editions, as well as the posthumous ones by W. & S. Jones.
Experts from The Jackson Laboratory and around the world provide practical advice on everything from how to establish a colony to where to go for specific mutations. Systematic Approach to Evaluation of Mouse Mutations includes information on medical photography, grafting procedures, how to map the genes and evaluate the special biological characteristics of the mice.
Since the initial discovery of the G protein-coupled receptor system that regulates cyclicAMP production, the G protein field has rapidly expanded. Cell surface receptors that couple to heterotrimeric G proteins, the G prote- coupled receptors (GPCRs), number in the hundreds and bind to a wide div- sity of ligands including, biogenic amines (e. g. , adrenaline), lipid derivatives (e. g. , lysophosphatidic acid), peptides (e. g. , opioid peptides), proteins (e. g. , thyroid-stimulating hormone), and odorants to name a few. The GPCR system is found throughout biology in such simple organisms as yeast and in such more complex organisms as Dictyostelium discoideum (slime mold), Caen- habditis elegans (nematode worm), and of course in humans. GPCRs and their associated G protein systems are the subject of intense academic research and because of their involvement in a human biology and disease, the pharmac- tical industry has large research initiatives dedicated to the study of GPCRs. By some estimates, more than 50% of the pharmaceuticals on the market are targeted at GPCRs. The G protein/G protein-coupled receptor system consists of a receptor (GPCR), a heterotrimeric G protein consisting of ?, ?, and ? subunits, and an effector. G protein effector molecules, such as enzymes or ion channels, respond to acti- tion by the G protein to generate second messengers or changes in membrane potential that lead to alterations in cell physiology.
The goal of this book is to make some underutilized but potentially very useful methods in experimental design and analysis available to ecologists, and to encourage better use of standard statistical techniques. Ecology has become more and more an experimental science in both basic and applied work, but experiments in the field and in the laboratory often present formidable statistical difficulties. Organized around providing solutions to ecological problems, this book offers ways to improve the statistical aspects of conducting manipulative ecological experiments, from setting them up to interpreting and reporting the results. An abundance of tools, including advanced approaches, are made available to ecologists in step-by-step examples, with computer code provided for common statistical packages. This is an essential how-to guide for the working ecologist and for graduate students preparing for research and teaching careers in the field of ecology.
It is now more than ten years since Dr. Alec Jeffreys (now Professor Sir Alec Jeffreys, FRS) reported in Nature that the investigation of certain minisatellite regions in the human genome could produce what he termed DNA fingerprints and provide useful information in the fields of paternity testing and forensic analysis. Since that time we have witnessed a revolution in the field of forensic identification. A total change of technology, from serological or electrophoretic analysis of protein polymorphisms to direct investigation of the underlying DNA polymorphisms has occurred in a short space of time. In addition, the evolution and development of the DNA systems themselves has been rapid and spectacular. In the last decade we have progressed from the multilocus DNA fing- prints, through single locus systems based on the same Southern blot RFLP technology, to a host of systems based on the PCR technique. These include Allele Specific Oligonucleotide (ASO)-primed systems detected by dot blots, the "binary" genotypes produced by mapping variations within VNTR repeats demonstrated by minisatellite variant repeat (MVR) analysis, and yet other fragment-length polymorphisms in the form of Short Tandem Repeat (STR) loci. Hand in hand with the increasing range of systems available has been the development of new instrumentation to facilitate their analysis and allow us to explore the possibilities of high volume testing in the form of mass scre- ing and offender databases.
Offering all aspects of humidity measurement and instrumentation, this work includes rudiments and theory, common applications, advantages and limitations of frequently-used sensors and techniques, and guidelines for installation, maintenance and calibration. The disk is intended for easy conversions of humidity parameters and units.
Response Surfaces: Designs and Analyses; Second Edition presents
techniques for designing experiments that yield adequate and
reliable measurements of one or several responses of interest,
fitting and testing the suitability of empirical models used for
acquiring information from the experiments, and for utilizing the
experimental results to make decisions concerning the system under
investigation.
Let this down-to-earth book be your guide to the statistical integrity of your work. Without relying on the detailed and complex mathematical explanations found in many other statistical texts, Principles of Experimental Design for the Life Sciences teaches how to design, conduct, and interpret top-notch life science studies. Learn about the planning of biomedical studies, the principles of statistical design, sample size estimation, common designs in biological experiments, sequential clinical trials, high dimensional designs and process optimization, and the correspondence between objectives, design, and analysis. Each of these important topics is presented in an understandable and non-technical manner, free of statistical jargon and formulas. Written by a biostatistical consultant with 25 years of experience, Principles of Experimental Design for the Life Sciences is filled with real-life examples from the author's work that you can quickly and easily apply to your own. These examples illustrate the main concepts of experimental design and cover a broad range of application areas in both clinical and nonclinical research. With this one innovative, helpful book you can improve your understanding of statistics, enhance your confidence in your results, and, at long last, shake off those statistical shackles!
This work elucidates the power of modern nuclear magnetic resonance (NMR) techniques to solve a wide range of practical problems that arise in both academic and industrial settings. This edition provides current information regarding the implementation and interpretation of NMR experiments, and contains material on: three- and four-dimensional NMR; the NMR analysis of peptides, proteins, carbohydrates and oligonucleotides; and more.
Most lab manuals assume a high level of knowledge among biochemistry students, as well as a large amount of experience combining knowledge from separate scientific disciplines. Biochemistry in the Lab: A Manual for Undergraduates expects little more than basic chemistry. It explains procedures clearly, as well as giving a clear explanation of the theoretical reason for those steps. Key Features: Presents a comprehensive approach to modern biochemistry laboratory teaching, together with a complete experimental experience Includes chemical biology as its foundation, teaching readers experimental methods specific to the field Provides instructor experiments that are easy to prepare and execute, at comparatively low cost Supersedes existing, older texts with information that is adjusted to modern experimental biochemistry Is written by an expert in the field This textbook presents a foundational approach to modern biochemistry laboratory teaching together with a complete experimental experience, from protein purification and characterization to advanced analytical techniques. It has modules to help instructors present the techniques used in a time critical manner, as well as several modules to study protein chemistry, including gel techniques, enzymology, crystal growth, unfolding studies, and fluorescence. It proceeds from the simplest and most important techniques to the most difficult and specialized ones. It offers instructors experiments that are easy to prepare and execute, at comparatively low cost.
Proceedings of the 51st Course of the International School of Subnuclear Physics on 'Reflections on the next step for LHC', Erice, 24 June - 3 July 2013.
The Second Edition of this bestseller brings together basic plant
pathology methods published in diverse and often abstract
publications. The Second Edition is updated and expanded with
numerous new figures, new culture media, and additional methods for
working with a greater number of organisms. Methods are easy to use
and eliminate the need to seek out original articles. This
reference allows for easy identification of methods appropriate for
specific problems and facilities. Scientific names of pathogens and
some of their hosts are updated in this edition. The book also acts
as a research source providing more than 1,800 literature
citations.
This book focuses primarily on the atomic force microscope and serves as a reference for students, postdocs, and researchers using atomic force microscopes for the first time. In addition, this book can serve as the primary text for a semester-long introductory course in atomic force microscopy. There are a few algebra-based mathematical relationships included in the book that describe the mechanical properties, behaviors, and intermolecular forces associated with probes used in atomic force microscopy. Relevant figures, tables, and illustrations also appear in each chapter in an effort to provide additional information and points of interest. This book includes suggested laboratory investigations that provide opportunities to explore the versatility of the atomic force microscope. These laboratory exercises include opportunities for experimenters to explore force curves, surface roughness, friction loops, conductivity imaging, and phase imaging.
In this book, the major paradigm-shifting discoveries made in the past century on key cellular nanomachines are described in great detail: their complex yet precise and elegant design and function, as well as the diseases linked to their dysfunction and the therapeutic approaches to overcome them. The major focus of this book is the "porosome" nanomachine, the universal secretory portal in cells. This is an ideal book for students, researchers, and professionals in the fields of nanoscience and nanotechnology.
"When you first view Rose-Lynn Fisher's photographs, you might think you're looking down at the world from an airplane, at dunes, skyscrapers or shorelines. In fact, you're looking at her tears. . . . [There's] poetry in the idea that our emotional terrain bears visual resemblance to the physical world; that our tears can look like the vistas we see out an airplane window. Fisher's images are the only remaining trace of these places, which exist during a moment of intense feeling-and then vanish." -NPR "[A] delicate, intimate book. . . . In The Topography of Tears photographer Rose-Lynn Fisher shows us a place where language strains to express grief, longing, pride, frustration, joy, the confrontation with something beautiful, the confrontation with an onion." -Boston Globe Does a tear shed while chopping onions look different from a tear of happiness? In this powerful collection of images, an award-winning photographer trains her optical microscope and camera on her own tears and those of men, women, and children, released in moments of grief, pain, gratitude, and joy, and captured upon glass slides. These duotone photographs reveal the beauty of recurring patterns in nature and present evocative, crystalline imagery for contemplation. Underscored by poetic captions, they translate the mysterious act of crying into an atlas mapping the structure and magnificence of our interior lives. Rose-Lynn Fisher is an artist and author of the International Photography Award-winning studies Bee and The Topography of Tears. Her photographs are exhibited in galleries, festivals, and museums across the world and have been featured by the Dr. Oz Show, NPR, Smithsonian, Harper's, New Yorker, Time, Wired, Reader's Digest, Discover, Brain Pickings, and elsewhere. She received her BFA from Otis Art Institute and lives in Los Angeles.
Trace Analysis is a highly practical book which deals with the science rather than the paperwork of quality assurance systems. Produced as part of the UK Valid Analytical Measurement (VAM) initiative, it provides the analyst with a systematic approach across the broad spectrum of trace analysis, offering practical advice and guidance on methodology and techniques. The book is structured to take the analyst step-by-step through the stages of any trace analysis. The approach is general, being broken down only into types of analyte. Additional chapters explain the application of groups of techniques to each analyte type. Each section contains references to published material which will allow the analyst to obtain further information on specific topics. Throughout the book, the analyst is reminded of pitfalls which lead to unreliable results. This new book therefore offers invaluable advice to analysts in all areas and at all levels, providing practical 'expert' advice on methodology. It will prove indispensable as a single, comprehensive bench guide for analysts in university, college and industrial laboratories.
This updated and revised edition of a classic work provides a summary of methods for numerical computation of high resolution conventional and scanning transmission electron microscope images. At the limits of resolution, image artifacts due to the instrument and the specimen interaction can complicate image interpretation. Image calculations can help the user to interpret and understand high resolution information in recorded electron micrographs. The book contains expanded sections on aberration correction, including a detailed discussion of higher order (multipole) aberrations and their effect on high resolution imaging, new imaging modes such as ABF (annular bright field), and the latest developments in parallel processing using GPUs (graphic processing units), as well as updated references. Beginning and experienced users at the advanced undergraduate or graduate level will find the book to be a unique and essential guide to the theory and methods of computation in electron microscopy.
Knowledge of the microscopic structure of biological systems is the key to understanding their physiological properties. Most of what we now know about this subject has been generated by techniques that produce images of the materials of interest, one way or another, and there is every reason to believe that the impact of these techniques on the biological sciences will be every bit as important in the future as they are today. Thus the 21st century biologist needs to understand how microscopic imaging techniques work, as it is likely that sooner or later he or she will have to use one or another of them, or will otherwise become dependent on the information that they provide. The objective of this textbook is to introduce its readers to the many techniques now available for imaging biological materials, e.g. crystallography, optical microscopy and electron microscopy, at a level that will enable them to use them effectively to do research. Since all of these experimental methods are best understood in terms of Fourier transformations, this book explains the relevant concepts from this branch of mathematics, and then illustrates their elegance and power by applying them to each of the techniques presented. The book is derived from a one-term course in structural biology that the author gave for many years at Yale. It is intended for students interested either in doing structural research themselves, or in exploiting structural information produced by others. Over the years, the course was taken successfully by advanced undergraduates and by graduate students. Scientists interested in entering the structural biology field later in their careers may also find it useful.
A time-tested, systematic approach to the buying and selling of complex research instruments Searching for the best laboratory instruments and systems can be a daunting and expensive task. A poorly selected instrument can dramatically affect results produced and indirectly affect research papers, the quality of student training, and an investigator's chances for advancement. "Buying and Selling Laboratory Instruments" offers the valuable insights of an analytical chemist and consultant with over four decades of experience in locating instruments based upon both need and price. It helps all decision makers find the best equipment, service, and support while avoiding the brand-loyalty bias of sales representatives so you can fully meet your laboratory's requirements. The first section of the book guides buyers through the hurdles of funding, purchasing, and acquiring best-fit instruments at the least-expensive price. It explains how to find vendors that support their customers with both knowledgeable service and application support. Also offered is guidance on adapting your existing instruments to new applications, integrating new equipment, and what to do with instruments that can no longer serve in research mode. The second section explains the sales process in detail. This is provided both as a warning against manipulative sales reps and as a guide to making the sale a win-win process for you and your vendor. It also shows you how to select a knowledgeable technical guru to help determine the exact system configuration you need and where to find the best price for it. Added bonuses are summary figures of buying sequence and sales tools and an appendix containing frequently asked questions and memory aids. "Buying and Selling Laboratory Instruments" is for people directly involved in selecting and buying instruments for operational laboratories, from the principle investigator to the person actually delegated with investigating and selecting the system to be acquired. Sales representatives; laboratory managers; universities; pharmaceutical, biotech, and forensic research firms; corporate laboratories; graduate and postdoctoral students; and principle investigators will not want to be without this indispensible guide.
The Sunday Times Top Ten Bestseller Have you ever wondered if a severed head retains consciousness long enough to see what happened to it? Or whether your dog would run to fetch help, if you fell down a disused mineshaft? And what would happen if you were to give an elephant the largest ever single dose of LSD? The chances are that someone, somewhere has conducted a scientific experiment to find out... 'Excellent accounts of some of the most important and interesting experiments in biology and psychology' Simon Singh If left to their own devices, would babies instinctively choose a well-balanced diet? Discover the secret of how to sleep on planes Which really tastes better in a blind tasting - Coke or Pepsi?
Developments in cryo-electron microscopy are creating new opportunities within structural biology and there is currently great interest in developing cryo-EM as a core tool for atomic level structural biology. Many structural techniques can give atomic or near atomic level information, but lack the ability to study proteins within a near-native environment, for example within a cellular compartment. Cryo-EM provides this opportunity, but despite the recent massive improvements in single particle cryo-EM, obtaining sub-2A structural information is still a major challenge. Cryo-electron microscopy has undergone significant developments in microscope design, camera technology and data processing regimes, but there are significant challenges that remain and opportunities to explore, many of which must be tackled by the community as a whole, rather than by individual groups. For example, sample preparation is central to electron microscopy and is currently a significant bottleneck in many experiments, and there are significant problems with ensuring the integrity of the field in terms of dealing with inherently low signal-to-noise images. This volume brings together leading researchers from the UK and the international cryo-electron microscopy community to discuss current developments and new challenges in the field. In this volume the topics covered include: Sample preparation in single particle cryo-EM Pushing the limits in single particle cryo-EM Tomographic analysis, CLEM Map/model validation and machine learning in EM
This book provides a comprehensive overview of the latest developments in the field of spin dynamics and magnetic damping. It discusses the various ways to tune damping, specifically, dynamic and static control in a ferromagnetic layer/heavy metal layer. In addition, it addresses all optical detection techniques for the investigation of modulation of damping, for example, the time-resolved magneto-optical Kerr effect technique. |
![]() ![]() You may like...
How to Look at Student Work to Uncover…
Susan M. Brookhart, Alice Oakley
Paperback
Impact of Digital Transformation in…
Ana Afonso, Lina Morgado, …
Hardcover
R5,784
Discovery Miles 57 840
Technology Supported Innovations in…
Pedro Isaias, Demetrios G. Sampson, …
Hardcover
R2,890
Discovery Miles 28 900
Immunopathology, Volume 107
John Carr, Marilyn Roossinck
Hardcover
|