![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment
Scanning and stationary-beam electron microscopes have become an indispensable tool for both research and routine evaluation in materials science, the semi- conductor industry, nanotechnology and the biological, forensic, and medical sciences. This book provides an introduction to the theory and current practice of electron microscopy, aimed primarily at undergraduates who need to learn how the basic principles of physics are applied in an important area of science and technology that has contributed greatly to our knowledge of life processes and inner space. However, it will be equally valuable for technologists who make use of electron microscopes and for graduate students, university teachers and researchers who need a concise text that deals with the basic principles of microscopy. Less technical but broader in scope than other microscopy textbooks, Physical Principles of Electron Microscopy is appropriate for undergraduates and technologists with limited math...
Did the universe start with a Big Bang? Is light a wave, a particle –
or both? Is a "Theory of Everything" possible?
Efficiency and life time of solar cells, energy and power density of the batteries, and costs of the fuel cells alike cannot be improved unless the complex electronic, optoelectronic, and ionic mechanisms underpinning operation of these materials and devices are understood on the nanometer level of individual defects. Only by probing these phenomena locally can we hope to link materials structure and functionality, thus opening pathway for predictive modeling and synthesis. While structures of these materials are now accessible on length scales from macroscopic to atomic, their functionality has remained Terra Incognitae. In this volume, we provide a summary of recent advances in scanning probe microscopy studies of local functionality of energy materials and devices ranging from photovoltaics to batteries, fuel cells, and energy harvesting systems. Recently emergent SPM modes and combined SPM-electron microscopy approaches are also discussed. Contributions by internationally renowned leaders in the field describe the frontiers in this important field.
Chemical and biochemical Laboratories are full of potentially dangerous chemicals and equipment. 'Safety in the Chemistry and Biochemistry Laboratory' provides the necessary information needed for working with these chemicals and apparatus to avoid: fires, explosions, toxic fumes, skin burns, poisoning and other hazards. Both authors, Andr? Picot and Philippe Grenouillet, are recognized authorities in the field of lab safety, and their book arrange the information not available in similar publications. It is addressed to members of Chemical Health& Safety as well as working chemists in labs everywhere. Also Lab managers will find the book a useful addition to their bookshelf.
Scanning Probe Microscopy (SPM) is the enabling tool for nano(bio)technology, which has opened new vistas in many interdisciplinary research areas. Concomitant with the developments in SPM instrumentation and techniques are new and previously unthought-of opportunities in materials nanofabrication and characterisation. In particular, the developments in addressing and manipulating matter at the level of single atoms or molecules, and studies of biological materials (e.g. live cells, or cell membranes) result in new and exciting discoveries.The rising importance of SPM demands a concise treatment in the form of a book which is accessible to interdisciplinary practitioners. This book highlights recent advances in the field of SPM with sufficient depth and breadth to provide an intellectually stimulating overview of the current state of the art. The book is based on a set of carefully selected original works from renowned contributors on topics that range from atom technology, scanning tunneling spectroscopy of self-assembled nanostructures, SPM probe fabrication, scanning force microscopy applications in biology and materials science down to the single molecule level, novel scanning probe techniques, and nanolithography.The variety of topics underlines the strong interdisciplinary character of SPM related research and the combined expertise of the contributors gives us a unique opportunity to discuss possible future trends in SPM related research. This makes the book not merely a collection of already published material but an enlightening insight into cutting edge research and global SPM research trends.
The 1989 International Conference on Nuclear Analytical Methods in theUfe Scienceswas a continuationofa seriesofconfer encesheldbytheInternationalAtomicEnergyAgency. Thefirsttook placeinAmsterdamin 1967, thesecondin Bledin 1972, andthethird inViennain 1978. Theaimoftheseconferenceshasbeentostimulate discussions between scientists who are working as biologists, envi ronmentalists, and physicians, and those who are working on the advancementofnuclear analytical techniques. The 1989 Conference was held at the National Institute of Standards and Technology (NIST, formerly the National Bureau of Standards)inGaithersburg, Maryland. ThefocalpointoftheConfer ence was the presentation of results from multidisciplinary research involvingnuclear analytical techniques and their applications to the life sciences. Wehave obtained contributions from life sciencefields thatrelatethenuclear analyticalmethods to abroad scopeofbiologi cal, medical, and environmental applications. Deliberately, our defi nition of nuclear analytical techniques was made flexible. Methods and applications were treated in a more comprehensive way than thoseatestablished meetings. Particularconsideration was given to contributions from developing countries. We are indebted to many people and organizations for their assistancein making this symposium possible. TheConference was organizedbytheUSDepartmentofCommerce'sNISTincooperation with the International Atomic Energy Agency, by supplying both financial support and scientific expertise. The meeting was cospon soredbytheAmericanNuclearSociety, theUSDepartmentofEnergy, andtheFoodandDrugAdministration, whoprovidedbothorganiza tional and financial support. We hope that the results of this Conference, presented here, will stimulatethe developmentofnew collaborativeresearch efforts betweenthe life sciencesand analytical fields. Acontinuationofthis series ofconferences willbe a measureofthe successofthis interdis ciplinary collaboration."
Structure-Based Drug Design brings together scientists working on different aspects of the subject, demonstrating the necessary collaboration and interdisciplinary approach to this complex area. The focus is on X-ray crystallographic and computational approaches. The general aspects of these approaches are introduced in the first six articles. The remaining articles provide examples of the application of X-ray crystallography, molecular modelling, molecular dynamics, QSAR, database analysis, and homology modelling. The papers cover a wealth of interesting problems in the design of new and enhanced pharmaceuticals.
Polymer Surfaces and Interfaces II W. J. Feast, University of Durham, Durham, UK H. S. Munro, Courtaulds Research, Coventry, UK R. W. Richards, University of Durham, Durham, UK This volume presents a collection of review papers, based on the a Polymer Surfaces and Interfaces II International Symposiuma which took place in Durham (UK), July 1991 Compiled here, the papers present an authoritative overview of current technology and research on polymer surfaces, by acknowledged experts in their specialist fields. Individual reviews cover analytical techniques, properties, reactions, modelling and synthesis of surfaces and interfaces. Polymer Surfaces and Interfaces II will be of interest to polymer scientists, surface scientists, chemists, physicists and biologists, working in industrial and academic laboratories. Reviews of the previous volume a Altogether a most useful addition to polymer sciencea ---- Physics Bulletin a The book can be unreservedly recommended to chemists and materials scientists with an interest in adhesion, biomaterials, polymer dispersions and molecular engineeringa ---- Polymer Contents Surface Chemistry of Chemically Resistant Polymers; T. G. Bee, A. J. Dias, N. L. Franchina, B. U. Kolb, K.--W. Lee, P. A. Patton, M. S. Shoichet and T. J. McCarthy Self--assembled Molecular Films as Polymer Surface Models; D. L. Allara, S. V. Atre and A. N. Parikh Non--equilibrium Effects in Polymeric Stabilization; M. E. Cates and J. T. Brooks Ion Beam Analysis of Composition Profiles near Polymer Surfaces and Interfaces; R. A. L. Jones Laser Light Scattering; J. C. Earnshaw Characterization of Interfaces in Polymers and Composites using Raman Spectroscopy; R. J. Young Surface Modification and Analysis of Ultra--high--modulus Polyethylene Fibres for Composites; G. A. George SSIMS ---- An Emeriging Technique for the Surface Chemical Analysis of Polymeric Biomaterials; M. C. Davies Scanning Probe Microscopy ---- Current Issues in the Analysis of Polymeric Biomaterials; M. C. Davies, D. E. Jackson, C. J Roberts, S. J. B. Tendler, K. M. Kreusel, M. J. Wilkins and P. M. Williams Surface Grafting of a Thrombin Substrate on a Polymer Membrane and the Inhibition of Thrombin Activity Leading to Non--thrombogenicity; Y. Ito, L.--S. Liu and Y. Imanishi Acid----Base Effects at Polymer Interfaces; C. J. van Oss
This book presents a detailed analysis of up-to-date literature on in vitro morphogenesis at cell, tissue, organ, and whole plant levels. Its driving force is the substantial advances made in the field of morphogenesis in tissue cultures during the last 25 years.
Molecular recognition, also known as biorecognition, is the heart of all biological interactions. Originating from protein stretching experiments, dynamic force spectroscopy (DFS) allows for the extraction of detailed information on the unbinding process of biomolecular complexes. It is becoming progressively more important in biochemical studies and is finding wider applications in areas such as biophysics and polymer science. In six chapters, Dynamic Force Spectroscopy and Biomolecular Recognition covers the most recent ideas and advances in the field of DFS applied to biorecognition: Chapter 1: Reviews the basic and novel aspects of biorecognition and discusses the emerging capabilities of single-molecule techniques to disclose kinetic properties and molecular mechanisms usually hidden in bulk measurements Chapter 2: Describes the basic principle of atomic force microsocopy (AFM) and DFS, with particular attention to instrumental and theoretical aspects more strictly related to the study of biomolecules Chapter 3: Overviews the theoretical background in which experimental data taken in nonequilibrum measurements of biomolecular unbinding forces are extrapolated to equilibrium conditions Chapter 4: Reviews the most common and efficient strategies adopted in DFS experiments to immobilize the interacting biomolecules to the AFM tip and to the substrate Chapter 5: Presents and discusses the most representative aspects related to the analysis of DFS data and the challenges of integrating well-defined criteria to calibrate data in automatic routinary procedures Chapter 6: Overviews the most relevant DFS applications to study biorecognition processes, including the biotin/avidin pair, and selected results on various biological complexes, including antigen/antibody, proteins/DNA, and complexes involved in adhesion processes Chapter 7: Summarizes the main results obtained by DFS applied to study biorecognition processes with forthcoming theoretical and experimental advances Although DFS is a widespread, worldwide technique, no books focused on this subject have been available until now. Dynamic Force Spectroscopy and Biomolecular Recognition provides the state of the art of experimental data analysis and theoretical procedures, making it a useful tool for researchers applying DFS to study biorecognition processes.
This book highlights emerging diffraction studies of strain and dislocation gradients with mesoscale resolution, which is currently a focus of research at laboratories around the world. While ensemble-average diffraction techniques are mature, grain and subgrain level measurements needed to understand real materials are just emerging. In order to understand the diffraction signature of different defects, it is necessary to understand the distortions created by the defects and the corresponding changes in the reciprocal space of the non-ideal crystals.Starting with a review of defect classifications based on their displacement fields, this book then provides connections between different dislocation arrangements, including geometrically necessary and statistically stored dislocations, and other common defects and the corresponding changes in the reciprocal space and diffraction patterns. Subsequent chapters provide an overview of microdiffraction techniques developed during the last decade to extract information about strain and dislocation gradients. X-ray microdiffraction is a particularly exciting application compared with alternative probes of local crystalline structure, orientation and defect density, because it is inherently non-destructive and penetrating.
This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Two chapters focus on molecular docking, one of which relates to drug discovery and cheminformatics and the other to proteomics. In addition, this volume contains tutorials on spin-orbit coupling and cellular automata modeling, as well as an extensive bibliography of computational chemistry books. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry."—JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)."—JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
This interdisciplinary book, Advanced Microscopy: A Strong Analytical Tool in Materials Science, covers the methodology and applications of different advanced microscopic techniques in various research fields, including chemistry, nanotechnology, polymers, chemical engineering, and biomedical engineering, providing an informative overview that helps to determine the best applications for advanced materials. Materials usually behave very differently at nanoscale in all aspects, and this volume shows how microscopy can help provide a detailed understanding of materials such as semiconductors, metals, polymers, biopolymers, etc. The volume illustrates advanced microscopic techniques that include scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), confocal microscopy, and others. The microscopy techniques presented in the volume show applications in many areas of science, including botany and plant science, medicine, nanotechnology, chemistry, food science, waste management, and others. This book presents the diverse advanced microscopic techniques for researchers, giving a better understanding as well as implementation of novel techniques in materials science.
1 2 Michel M. VERSTRAETE and Martin BENISTON 1 Space Applications Institute, EC Joint Research Centre, Ispra, Italy 2 Department of Geography, University of Fribourg, Switzerland This volume contains the proceedings ofthe workshop entitled "Satellite Remote Sensing and Climate Simulations: Synergies and Limitations" that took place in Les Diablerets, Switzerland, September 20-24, 1999. This international scientific conference aimed at addressing the current and pot- tial role of satellite remote sensing in climate modeling, with a particular focus on land surface processes and atmospheric aerosol characterization. Global and regional circulation models incorporate our knowledge ofthe dynamics ofthe Earth's atmosphere. They are used to predict the evolution of the weather and climate. Mathematically, this system is represented by a set ofpartial differential equations whose solution requires initial and bo- dary conditions. Limitations in the accuracy and geographical distribution of these constraints, and intrinsic mathematical sensitivity to these conditions do not allow the identification of a unique solution (prediction). Additional observations on the climate system are thus used to constrain the forecasts of the mathematical model to remain close to the observed state ofthe system.
Rarely does the world see as versatile a figure as Herbert Simon. A Nobel laureate in economics, he was an accomplished political scientist, winner of a lifetime achievement award from the American Psychological Association, and founder of the Department of Computer Science at Carnegie Mellon University. In all his work in all these fields, he pursued a single goal: to create a science that could map the bounds of human reason and so enlarge its role in human affairs. Hunter Crowther-Heyck uses the career of this unique individual to examine the evolution of the social sciences after World War II, particularly Simon's creation of a new field, systems science, which joined together two distinct, powerful approaches to human behavior, the sciences of choice and control. Simon sought to develop methods by which human behavior, specifically human problem-solving, could be modeled and simulated. Regarding mind and machine as synonymous, Simon applied his models of human behavior to many other areas, from public administration and business management to artificial intelligence and the design of complex social and technical systems. In this informed and discerning study, Crowther-Heyck explores Simon's contributions to science and their influences on modern life and thought. For historians of science, social science, and technology, and for scholars of twentieth-century American intellectual and cultural history, this account of Herbert Simon's life and work provides a rich and valuable perspective.
Combined fields of Microbiology and Nanotechnology have been most successful in providing novel solutions for protecting the health of humans and environment. This book covers the implications of nano-strategies to combat bacterial pathogens, applications of nanotechniques in microbiology, and innovative advances in the area of medical microbiology. Contents are divided into three sections -- Nanoscience in controlling bacterial pathogens, Nanoscience in Microbiology, Medical Microbiology. This volume is going to provide timely information about the technological advances of Nanoscience in the domain of Microbiology, with a special emphasis on Pathobiology. The book is a useful read for students and researchers in microbiology, nanotechnology and medical microbiology.
Many chemists - especially those most brilliant in their field - fail to appreciate the power of planned experimentation. They dislike the mathematical aspects of statistical analysis. In addition, these otherwise very capable chemists also dismissed predictive models based only on empirical data. Ironically, in the hands of subject matter experts like these elite chemists, the statistical methods of mixture design and analysis provide the means for rapidly converging on optimal compositions. What differentiates Formulation Simplified from the standard statistical texts on mixture design is that the authors make the topic relatively easy and fun to read. They provide a whole new collection of insighful original studies that illustrate the essentials of mixture design and analysis. Solid industrial examples are offered as problems at the end of many chapters for those who are serious about trying new tools on their own. Statistical software to do the computations can be freely accessed via a web site developed in support of this book.
This book is an introduction to electron holography, a newly developed technique for observing and measuring microscopic structures of matter and fields using the wave nature of electrons. It describes principles, experimental details, and observation examples for vortices in superconductors, the magnetic domain structure in ferromagnets, and for fundamental phenomena of quantum mechanics such as the single-electron build up of an interference pattern and the Aharonov-Bohm effect. The most recent information in this rapidly evolving field is included in this new edition, for example, the dynamical observation of vortices in superconductors.
The Diels-Alder reaction mechanism was first reported in 1928 and in the last 70 years has become one of the most commonly used and studied methodologies in organic chemistry. The reaction, which involves the addition of a diene to an alkene to form a six-membered ring, is particularly important in the synthesis of compounds of practical interest such as drugs, dyes, polymers, fragrances, agrochemicals and fine chemicals. The experimental procedure is very simple with generally good yields and minor side reactions. The use of organic solvents is not always necessary - an important factor when considering greener synthetic options. This book focuses on practice, describing procedures and techniques and as well as reporting on industrial applications. Graphical illustration presents the concepts in a clear and concise format, covering procedures and techniques employed to realize selective and clean syntheses based on the Diels-Alder methodology. Key features:
Research in carbon nanotubes has reached a horizon that is impacting a variety of fields, such as nanoelectronics, flat panel display, composite materials, sensors, nanodevices, and novel instrumentation. The unique structures of the nanotubes result in numerous superior physical and chemical properties, such as the strongest mechan ical strength, the highest thermal conductivity, room-temperature ballistic quantum conductance, electromechanical coupling, and super surface functionality. Several books are available that introduce the synthesis, physical and chemical properties, and applications of carbon nanotubes. Among the various analytical techniques, high-resolution transmission electron microscopy (HRTEM) has played a key role in the discovery and characterization of carbon nanotubes. It may be claimed that carbon nanotubes might not have been discovered without using HRTEM. There is a great need for a book that addresses the theory, techniques, and applications of electron microscopy and associated techniques for nanotube research. The objective of this book is to fill this gap. The potential of HRTEM is now well accepted in wide-ranging communities such as materials science, physics, chemistry, and electrical engineering. TEM is a powerful technique that is indispensable for characterizing nanomaterials and is a tool that each major research institute must have in order to advance its research in nanotechnology."
Introduces both optical microscopy and medical imaging with an emphasis on recurring themes such as resolution and contrast to reinforce understanding. Includes many illustrations and boxed material that give more detailed explanations. Features hands-on activities and experiments. Provides end-of-chapter problems for self-study. Offers supplementary online materials including a solutions manual.
Drugs of Abuse: Neurological Reviews and Protocols is intended to provide insightful reviews of key current topics and, particularly, state-- the-art methods for examining drug actions in their various neuroanato- cal, neurochemical, neurophysiological, neuropharmacological, and molecular perspectives. The book should prove particularly useful to n- comers (graduate students and technicians) in this field, as well as to those established scientists (neuroscientists, biochemists, and molecular biologists) intending to pursue new careers or directions in the study of drugs. The book's protocols cover a wide variety of coherent methods for gathering inf- mation on quantitative changes in proteins and mRNAs at both tissue and cel- lar levels. Inducible gene expression in striatal neurons has been a hot topic over the last decade. Alterations in gene expression for a wide range of proteins in the striatum have been investigated in response to drug administration. Altered expression of given mRNAs and their product proteins constitutes essential molecular steps in the development of neuroplasticity related to long-term addictive properties of drugs of abuse. With the multiple labeling methods that are also described in the book, gene expression can be detected in a chemically identified cell phenotype; the expression of multiple genes of interest can be detected in a single cell simultaneously. Hundreds or thousands of gene expr- sion products can today be detected in one experimental setup using the pow- ful systematic cDNA macroarray or microarray screening technology. Moreover, protocols useful in analyzing the functional roles of genes and proteins (e. g.
Laboratory work is an essential part of undergraduate chemistry courses. The laboratory provides a setting for training not just in practical hand and instrument skills, but also for other skills such as planning, recording, interpreting and working in teams. However, students often learn little from their time in the laboratory and find it hard to make connections with lectures. Over half of third-level chemical students have no intention of becoming practising chemists anyway. Teaching staff may also feel pressured in relation to manpower, materials, time and safety. Carrying out exercises before and after laboratory sessions can maximise the benefit of practical work for higher education students. This books surveys existing materials for pre-laboratory and post-laboratory exercises in the chemical sciences. Twenty examples are given, and guidance is provided for constructing similar exercises.
The Analytical Methods Committee of the Royal Society of Chemistry has for many years been involved in national and international efforts to establish a comprehensive framework for achieving appropriate quality in chemical measurement. This handbook attempts to select or define robust procedures that ensure the best use of resources and enable laboratories to generate consistent, reliable data. Written in concise, easy-to-read language and illustrated with worked examples, it is a guide to current best practice and establishes a control framework for the development and validation of laboratory-based analytical methods. Topics include samples and sampling, method selection, equipment calibration and qualification, method development and validation, evaluation of data and statistical approaches for method performance and comparison. Valid Analytical Methods and Procedures will be welcomed by many organisations throughout the world who are required to prove that the validity of their analytical results can be established beyond reasonable doubt.
Related Title: Laboratory Scientific Glassblowing: Advanced Techniques and Glassblowing's Place in History'If you are interested in learning about glassblowing techniques for scientific glassware, then this book is an incredible opportunity to learn from a master glassblower. Much of this information is passed down in person, and to have it available in a book such as this is a very rare opportunity that you should not pass up.'IEEE Electrical Insulation MagazineThis book explains and demonstrates the methods involved in scientific glassblowing. It describes elementary to advanced glass manipulation together with technical information on its safe use and development in the laboratory. Edited by Paul Le Pinnet (MBE), a scientific glassblower with over 50 years' experience in the field, experts in glassblowing are brought together to explain their methods and approaches used to produce a variety of glassware.Laboratory Scientific Glassblowing is a unique project which updates and develops the traditional art of glassblowing and brings it into the 21st century. New skills and materials are introduced, including descriptions of working with fused silica, on laser profile cutting and on the creation of artistic glassware in a scientific setting. Written specifically as a hands-on reference work, this book can be used as a step-by-step practical guide for practitioners and scientists as well as students and apprentices interested in the field.Contributions from: Michael Baumbach, MD of H Baumbach & Co; Paul Rathmill, Enterprise Q; William Fludgate, MD BioChem Glass (app) Ltd; Ian Pearson (Past Chairman BSSG), Editor, BSSG Journal; Gary Coyne, California State University USA; Konstantin Kraft-Poggensee, Former chairman, German Scientific Glassblowing Society; Keith Holden President of the Australian and New Zealand Glassblowing Society; Phil Murray, Churchill Fellow. |
![]() ![]() You may like...
James Storm - Make Your Own Luck!: A…
James Storm, Mark Poulton
Hardcover
R744
Discovery Miles 7 440
Applications of Location Analysis
H.A. Eiselt, Vladimir Marianov
Hardcover
|