![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment
This book provides a definitive account of the theory, practice and applications of atom probe field ion microscopy (APFIM). The APFIM technique provides a unique method for observing and chemically identifying single atoms on solid surfaces. Recent advances in the method,which are largely due to the present authors, now permit the atomic-scale chemistry of a solid specimen to be recognised in three dimensions. As a result of these developments, new and exciting applications are rapidly emerging in the field of material science, surface science, and catalysis. The book is a state-of-the art account of this important field, and is intended for a graduate-level readership.
This essential explains what distinguishes light sheet microscopy from ordinary light microscopy. The author briefly examines the history of such principles, focusing on the technical concepts. Finally, current manifestations are presented without descending into the depths of the art of engineering. The unusual feature of light-sheet microscopy is not only that observation and illumination take place at a right angle, but also that this type of microscopy gains in particular from the fact that the type of illumination only passes through a very small part of the specimen. The appropriate selection of optical elements ensures that the observed image no longer contains any blurred parts. This Springer essential is a translation of the original German 1st edition essentials, Die Lichtblattmikroskopie by Rolf Theodor Borlinghaus, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2017. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
This volume provides a practical, intuitive approach to electroanalytical chemistry, presenting fundamental concepts and experimental techniques without the use of technical jargon or unnecessarily extensive mathematics. This edition offers new material on ways of preparing and using microelectrodes, the processes that govern the voltammetric behavior of microelectrodes, methods for characterizing chemically modified electrodes, electrochemical studies at reduced temperatures, and more. The authors cover such topics as analog instrumentation, overcoming solution resistance with stability and grace in potentiostatic circuits, conductivity and conductometry, electrochemical cells, carbon electrodes, film electrodes, microelectrodes, chemically modified electrodes, mercury electrodes, and solvents and supporting electrolytes.
This book is the final part of a trilogy of volumes covering the practical aspects of ligand interactions, biochemistry, and effector mechanisms of signal-transducing receptors. The book focuses on the measurement of receptor binding interactions both at equilibrium and from the kinetic point of view. In addition to descriptions of the most important techniques for the performance of ligand binding assays to both membrane-bound and solubilized receptors. A systematic effort has been made to provide insight into the strategy and tactics of receptor binding assays, and the conditions which must be satisfied if artifacts are to be avoided and interpretable data obtained. Since the behaviuor of even the simplest receptor systems can be surprisingly complex, an attempt has been made to provide some computational tools which allow complications to be predicted and handled or avoided. Ligand binding assays are very widely used, not least in drug screening and development. This volume will help the practitioner to choose an appropriate ligand, make a suitable receptor preparation, design and perform a well thought-out set of assays, and analyse the data obtained correctly.
Molecular plant pathology has directly benefited from advances in modern molecular techniques. These techniques have been applied both to pathogen and plant, enhancing our understanding of the organisms themselves and of the complex interactions which determine compatibility between them and their host plants. This new book and its companion volume represent the first comprehensive guide to the latest molecular techniques as well as the established approaches to the subject. Detailed protocols are included which address a wide range of investigations from plant pathogen isolation and culture, through physiology and biochemistry, to techniques for localizing genes and their products within the cells of the infected plants. Topics in Volume I include pathogens and pathogen manipulation, nucleic acid isolation and hybridization techniques, analysis of gene expression, and in situ hybridization. Researchers in plant science, molecular biology, and related areas will find the two volumes of Molecular Plant Pathology to be an invaluable experimental resource for this exciting and fast moving field, providing a wealth of easy-to-follow protocols supported by expert advice and guidance.
FROM REVIEWS OF THE SERIES
Fermentation: A Practical Approach is a collection of methods and techniques covering the setting up and use of fermentation units in academic research and industrial laboratories. The emphasis is on the breadth of usage of small-scale fermenters and the interdisciplinary nature of fermentation itself. The topics covered include fermentation modelling, sterilization, and instrumentation. This area of research has many important industrial applications, as evidenced by the affiliations of the authors (Hoechst, ICI, Beecham Pharmaceuticals).
Demography is everywhere in our lives: from birth to death. Indeed, the universal currencies of survival, development, reproduction, and recruitment shape the performance of all species, from microbes to humans. The number of techniques for demographic data acquisition and analyses across the entire tree of life (microbes, fungi, plants, and animals) has drastically increased in recent decades. These developments have been partially facilitated by the advent of technologies such as GIS and drones, as well as analytical methods including Bayesian statistics and high-throughput molecular analyses. However, despite the universality of demography and the significant research potential that could emerge from unifying: (i) questions across taxa, (ii) data collection protocols, and (iii) analytical tools, demographic methods to date have remained taxonomically siloed and methodologically disintegrated. This is the first book to attempt a truly unified approach to demography and population ecology in order to address a wide range of questions in ecology, evolution, and conservation biology across the entire spectrum of life. This novel book provides the reader with the fundamentals of data collection, model construction, analyses, and interpretation across a wide repertoire of demographic techniques and protocols. It introduces the novice demographer to a broad range of demographic methods, including abundance-based models, life tables, matrix population models, integral projection models, integrated population models, individual based models, and more. Through the careful integration of data collection methods, analytical approaches, and applications, clearly guided throughout with fully reproducible R scripts, the book provides an up-to-date and authoritative overview of the most popular and effective demographic tools. Demographic Methods across the Tree of Life is aimed at graduate students and professional researchers in the fields of demography, ecology, animal behaviour, genetics, evolutionary biology, mathematical biology, and wildlife management.
Many students find it daunting to move from studying environmental science, to designing and implementing their own research proposals. This book provides a practical introduction to help develop scientific thinking, aimed at undergraduate and new graduate students in the earth and environmental sciences. Students are guided through the steps of scientific thinking using published scientific literature and real environmental data. The book starts with advice on how to effectively read scientific papers, before outlining how to articulate testable questions and answer them using basic data analysis. The Mauna Loa CO2 dataset is used to demonstrate how to read metadata, prepare data, generate effective graphs and identify dominant cycles on various timescales. Practical, question-driven examples are explored to explain running averages, anomalies, correlations and simple linear models. The final chapter provides a framework for writing persuasive research proposals, making this an essential guide for students embarking on their first research project.
Many students find it daunting to move from studying environmental science, to designing and implementing their own research proposals. This book provides a practical introduction to help develop scientific thinking, aimed at undergraduate and new graduate students in the earth and environmental sciences. Students are guided through the steps of scientific thinking using published scientific literature and real environmental data. The book starts with advice on how to effectively read scientific papers, before outlining how to articulate testable questions and answer them using basic data analysis. The Mauna Loa CO2 dataset is used to demonstrate how to read metadata, prepare data, generate effective graphs and identify dominant cycles on various timescales. Practical, question-driven examples are explored to explain running averages, anomalies, correlations and simple linear models. The final chapter provides a framework for writing persuasive research proposals, making this an essential guide for students embarking on their first research project.
This book highlights the first systematic synthesis of various research approaches in forensic medical diagnosis of the morphological and polycrystalline structure of human biological tissues and biological fluids. One of the global challenges in such diagnosis is the assessment of actual time of death. The relevance and objectivity of such studies are given by the innovative use of complex multifunctional methods using lasers and Mueller-matrix polarimetry, which is presented in this book. As a result, within the framework of the statistical, correlation and fractal approaches, diagnostic relationships were established between the time parameters of the transformation of the topographic structure of polarization-inhomogeneous microscopic images of biological preparations and necrotic changes in the morphological structure of biological tissues of the deceased. On this foundation, new forensic medicine criteria have been developed for objective determination of time of death.
This revision brings the reader completely up to date on the evolving methods associated with increasingly more complex sample types analyzed using high-performance liquid chromatography, or HPLC. The book also incorporates updated discussions of many of the fundamental components of HPLC systems and practical issues associated with the use of this analytical method. This edition includes new or expanded treatments of sample preparation, computer assisted method development, as well as biochemical samples, and chiral separations.
This book focuses on the use of novel electron microscopy techniques to further our understanding of the physics behind electron-light interactions. It introduces and discusses the methodologies for advancing the field of electron microscopy towards a better control of electron dynamics with significantly improved temporal resolutions, and explores the burgeoning field of nanooptics - the physics of light-matter interaction at the nanoscale - whose practical applications transcend numerous fields such as energy conversion, control of chemical reactions, optically induced phase transitions, quantum cryptography, and data processing. In addition to describing analytical and numerical techniques for exploring the theoretical basis of electron-light interactions, the book showcases a number of relevant case studies, such as optical modes in gold tapers probed by electron beams and investigations of optical excitations in the topological insulator Bi2Se3. The experiments featured provide an impetus to develop more relevant theoretical models, benchmark current approximations, and even more characterization tools based on coherent electron-light interactions.
This book covers the most useful experimental methods for all types of solubility measurements. The importance of solubility phenomena has been long recognized throughout science. For example, in medicine, the solubility of gases in liquids forms the basis of life itself; in the environment, solubility phenomena influence the weathering of rocks, the creation of soils, the composition of natural water bodies and the behaviour and fate of many chemicals. However, until now, no systematic critical presentation of the methods for obtaining solubilities has been given. The book is divided into five sections: the first addresses the fundamental thermodynamic and kinetic background necessary for a full understanding of solubility phenomena. The next three sections cover the major types of solubility determinations according to the physical state of the solute: gases, liquids and solids; whilst the final section deals with those technologically important areas whose traditions are sufficiently different to justify their separate presentation. Each chapter aims to be comprehensive but not encyclopaedic, with coverage of the reliable methods in the particular area. Illustrations have been included to enable the novice investigator quickly develop apparatus of their own. Where appropriate, contributors have included sets of data to enable workers to properly assess the quality of their apparatus, technique and data.
It is common for us today to associate the practice of science primarily with the act of seeing-with staring at computer screens, analyzing graphs, and presenting images. We may notice that physicians use stethoscopes to listen for disease, that biologists tune into sound recordings to understand birds, or that engineers have created Geiger tellers warning us for radiation through sound. But in the sciences overall, we think, seeing is believing. This open access book explains why, indeed, listening for knowledge plays an ambiguous, if fascinating, role in the sciences. For what purposes have scientists, engineers and physicians listened to the objects of their interest? How did they listen exactly? And why has listening often been contested as a legitimate form of access to scientific knowledge? This concise monograph combines historical and ethnographic evidence about the practices of listening on shop floors, in laboratories, field stations, hospitals, and conference halls, between the 1920s and today. It shows how scientists have used sonic skills-skills required for making, recording, storing, retrieving, and listening to sound-in ensembles: sets of instruments and techniques for particular situations of knowledge making. Yet rather than pleading for the emancipation of hearing at the expense of seeing, this essay investigates when, how, and under which conditions the ear has contributed to science dynamics, either in tandem with or without the eye.
This book explains the operating principles of atomic force microscopy with the aim of enabling the reader to operate a scanning probe microscope successfully and understand the data obtained with the microscope. This enhanced second edition to "Scanning Probe Microscopy" (Springer, 2015) represents a substantial extension and revision to the part on atomic force microscopy of the previous book. Covering both fundamental and important technical aspects of atomic force microscopy, this book concentrates on the principles the methods using a didactic approach in an easily digestible manner. While primarily aimed at graduate students in physics, materials science, chemistry, nanoscience and engineering, this book is also useful for professionals and newcomers in the field, and is an ideal reference book in any atomic force microscopy lab.
The ultimate DIY project guide for techie dads raising kids in
their own geeky image, in the spirit of "The Dangerous Book for
Boys"
The first volume in the new Cambridge Handbooks in Behavioral Genetics series, Behavioral Genetics of the Mouse provides baseline information on normal behaviors, essential in both the design of experiments using genetically modified or pharmacologically treated animals and in the interpretation and analyses of the results obtained. The book offers a comprehensive overview of the genetics of naturally occurring variation in mouse behavior, from perception and spontaneous behaviors such as exploration, aggression, social interactions and motor behaviors, to reinforced behaviors such as the different types of learning. Also included are numerous examples of potential experimental problems, which will aid and guide researchers trying to troubleshoot their own studies. A lasting reference, the thorough and comprehensive reviews offer an easy entrance into the extensive literature in this field, and will prove invaluable to students and specialists alike.
Microscopy, which has served as a fundamental scientific technique for centuries, remains an invaluable tool in chemistry, biology, healthcare, and forensics. Increasingly, it is being integrated into modern chemical instrumentation and is of value as a powerful analytical tool across many scientific disciplines. Designed to serve as a primary resource for undergraduate or graduate students, An Introduction to Microscopy helps students master the foundational principles of microscopy. Intentionally concise, this text does not attempt to cover all aspects of all types of microscopy such as polarizing light and fluorescence. Instead, the authors' intent is to provide students with the basic knowledge necessary to explore and understand these more advanced techniques. The authors draw from their own extensive backgrounds in forensic identification to explain the methods and ways in which microscopy shapes every investigation. All nine chapters include questions and most include simple exercises related to the material covered. Numerous figures and photographs supplement the text and explain the procedures and principles introduced. A glossary is included as well as a convenient list of abbreviations, and references to more in-depth readings. Offers a Fundamental Approach for Students in all Fields The material assumes basic mathematics skill through algebra and a basic knowledge of fundamental chemistry and physics (essential for understanding optics). Although the authors used the high-quality microscopes found in their laboratories to produce the images found in the book, the information and methods can be applied to any type of microscope to which students have access. Understanding the fundamentals of microscopy provides students with a relevant and marketable skill that can be readily applied in many fields, even if the students have not had significant academic training in the subject. Furthermore, by understanding various aspects of microscopy, students will begin to understand the science behind other related areas, such as spectroscopy, optics, and any number of applications involving analytical instrumentation.
This book is a special edition, compiled for to the MSc Course Research Methodologies as taught at the Faculty of Aerospace Engineering at Delft University of Technology. It is a compilation of useful chapters from several sources on how to structure, set up, carry out and write up your (thesis) research to aid you in writing your research plan. Next to that it acts as a companion during your thesis research. After introducing you to the philosophy of scientific research, subsequent chapters each contribute to the different phases of your research. The book uniquely allows for the often multi- or interdisciplinary research many of you carry out, based on the established Dutch university tradition of (semi-)independent student research, creating a thread through the process for you to follow. This edition is a collection of chapters from An Introduction to Interdisciplinary Research (2016), edited by Steph Menken and Machiel Keestra, and Academic Skills for Interdisciplinary Studies. Revised edition (2019), by Koen van der Gaast, Laura Koenders and Ger Post, published by Amsterdam University Press.
A daily glass of wine prolongs life-yet alcohol can cause life-threatening cancer. Some say raising the minimum wage will decrease inequality while others say it increases unemployment. Scientists once confidently claimed that hormone replacement therapy reduced the risk of heart disease but now they equally confidently claim it raises that risk. What should we make of this endless barrage of conflicting claims? Observation and Experiment is an introduction to causal inference by one of the field's leading scholars. An award-winning professor at Wharton, Paul Rosenbaum explains key concepts and methods through lively examples that make abstract principles accessible. He draws his examples from clinical medicine, economics, public health, epidemiology, clinical psychology, and psychiatry to explain how randomized control trials are conceived and designed, how they differ from observational studies, and what techniques are available to mitigate their bias. "Carefully and precisely written...reflecting superb statistical understanding, all communicated with the skill of a master teacher." -Stephen M. Stigler, author of The Seven Pillars of Statistical Wisdom "An excellent introduction...Well-written and thoughtful...from one of causal inference's noted experts." -Journal of the American Statistical Association "Rosenbaum is a gifted expositor...an outstanding introduction to the topic for anyone who is interested in understanding the basic ideas and approaches to causal inference." -Psychometrika "A very valuable contribution...Highly recommended." -International Statistical Review
This technology has proved indispensable as a characterization tool with applications in surface physics, chemistry, materials science, bio-science, and data storage media. It has also shown great potential in areas such as the semiconductor and optical quality control industries. This revised edition updates the earlier such survey of the many rapidly developing subjects concerning the mapping of a variety of forces across surfaces, including basic theory, instrumentation, and applications. It also includes important new research in SFM and a thoroughly revised bibliography. Academic and industrial researchers using SFM or wishing to know more about its potential, will find this book an excellent introduction to this rapidly developing field.
This open access book brings out the state of the art on how informatics-based tools are used and expected to be used in nanomaterials research. There has been great progress in the area in which "big-data" generated by experiments or computations are fully utilized to accelerate discovery of new materials, key factors, and design rules. Data-intensive approaches play indispensable roles in advanced materials characterization. "Materials informatics" is the central paradigm in the new trend. "Nanoinformatics" is its essential subset, which focuses on nanostructures of materials such as surfaces, interfaces, dopants, and point defects, playing a critical role in determining materials properties. There have been significant advances in experimental and computational techniques to characterize individual atoms in nanostructures and to gain quantitative information. The collaboration of researchers in materials science and information science is growing actively and is creating a new trend in materials science and engineering.
This is a practical book for health and IT professionals who need to ensure that patient safety is prioritized in the design and implementation of clinical information technology. Healthcare professionals are increasingly reliant on information technology to deliver care and inform their clinical decision making. Health IT provides enormous benefits in efficiency, communication and decision making. However a number of high-profile UK and US studies have concluded that when Health IT is poorly designed or sub-optimally implemented then patient safety can be compromised. Manufacturers and healthcare organizations are increasingly required to demonstrate that their Health IT solutions are proactively assured. Surprisingly the majority of systems are not subject to regulation so there is little in the way of practical guidance as to how risk management can be achieved. The book fills that gap. The author, a doctor and IT professional, harnesses his two decades of experience to characterize the hazards that health technology can introduce. Risk can never be eliminated but by drawing on lessons from other safety-critical industries the book systematically sets out how clinical risk can be strategically controlled. The book proposes the employment of a Safety Case to articulate and justify residual risk so that not only is risk proactively managed but it is seen to be managed. These simple techniques drive product quality and allow a technology's benefits to be realized without compromising patient safety.
The areas of speciation analysis have being undergoing a continual evolution and development for the last 20 years. A fundamental tool for speciation analysis has been the combination of a chromatographic separation technique with atomic spectrometry, permitting a sensitive and specific detection of the target element. Recent impressive progress toward lower detection limits in ICP-MS, toward higher resolution in separation techniques, especially capillary electrophoresis and electro-chromatography, and toward higher sensitivity in electrospray mass spectrometry for molecule-specific detection at trace levels in complex matrices has allowed new frontiers to be crossed. This first volume of The Handbook of Elemental Speciation, brings together a collection of chapters covering comprehensively different aspects of procedures for speciation analysis at the different levels starting from sample collection and storage, through sample preparation approaches to render the species chromatographable, principles of separation techniques used in speciation analysis, to the element specific detection. This already very broad coverage of analytical techniques is completed by electrochemical methods, biosensors for metal ions, radioisotope techniques and direct solid speciation techniques. Special concern is given to quality assurance and risk assessment, and speciation-relevant legislation. Each chapter is a stand-alone reference covering a given facet of elemental speciation analysis written by an expert in a given field with the volume as a whole providing an excellent introductory text and reference handbook for analytical chemists in academia, government laboratories and industry, regulatory managers, biochemists, toxicologists, clinicians, environmental scientists, and students of these disciplines. The second volume will present in detail a summary of each key element determined by speciation methods, and its detection and measurement within the four key areas of the environment, food, occupation and clinical health. . |
![]() ![]() You may like...
Biodiversity, Conservation and…
Munir Oezturk, Volkan Altay, …
Hardcover
R5,227
Discovery Miles 52 270
Networks of Invasion: A Synthesis of…
David Bohan, Alex Dumbrell, …
Hardcover
R5,284
Discovery Miles 52 840
Code of Federal Regulations, Title 50…
Office of the Federal Register (U S )
Paperback
R1,570
Discovery Miles 15 700
|