![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Other branches of medicine > Medical imaging > Ultrasonics
Breast sonography is commonly used to evaluate mammographic and palpable abnormalities, and this issue covers all of the current applications currently in use. Sonography also plays a role in screening for breast cancer and in evaluating the extent of disease in the breast and the regional lymph nodes. This issue also reviews the use of ultrasound to perform biopsies, guide catheters, and deliver radiation therapy.
In the later stages of gestation, fetal functions undergo increasing change and development, preparing the fetus for the transition to its postnatal environment. Rapid maturation is witnessed in breathing, swallowing, sensory functions, sleep, and many other processes, with corresponding behavioral changes. By 35 to 40 weeks of gestation, fetuses are capable of living ex utero without support, but it is increasingly appreciated that even infants born at between 35 and 36 weeks can suffer long-term consequences. This book, which complements the author's previous volume on development of normal fetal movements during the first 25 weeks of gestation, discusses in detail the full range of behavioral phenomena observed during the final 15 weeks of gestation, with careful analysis of their mutual relationships. A key feature is the outstanding photographic material, difficult to obtain at this late stage, and the instructive graphs that are also included. The information provided will alert clinicians to deviations from the norm and to physiologic phenomena that can turn pathologic in infants born prematurely.
3D ultrasound shows a still image of a foetus, far more detailed than the 2D flat grey scale imaging. 4D ultrasound is more advanced, showing a moving image, allowing obstetricians to evaluate foetal well-being. It is also used by gynaecologists to examine uterine anomalies. This book is a practical guide to the use of 3D and 4D ultrasound in obstetrics and gynaecology. Divided into three sections, the text begins with an introduction to ultrasound, its working and application, its function, software, and volume calculation tools. Section Two covers clinical applications of volume ultrasound in obstetrics, explaining its use during the first trimester, for foetal abnormalities, for functional assessment of foetal brain development, and in labour. The final section discusses the application of ultrasound in gynaecology, covering uterine abnormalities, adnexal lesions, and in infertility. The book concludes with an appendix detailing different terms used by different brands. Key points Practical guide to use of 3D and 4D ultrasound in obstetrics and gynaecology Provides detailed explanation of ultrasound working, function and software Covers different uses of ultrasound for foetal monitoring, gynaecological disorders, and infertility Highly illustrated with detailed ultrasound images
Because of its portability, speed, and ease of use, ultrasound (US) is the most commonly used imaging modality in the ER.? This issue reviews the uses of US for obstetric and gynecologic presentations.? Gastrointestinal, abdominal, and genitourinary applications of US in the ER are quite common.? The use of US as guidance for ER procedures is also covered in this issue.
Gynecology provides many opportunities to utilize ultrasound in clinical practice.? Pelvic pain, uterine bleeding, and adnexal masses are reviewed in this issue.? Additionally the use of saline-infused sonohysterography, 3D ultrasound, and the pitfalls of transvaginal imaging are covered.? Lastly the application of ultrasound in the follow-up care for gynecologic cancer is reviewed.
Ultrasound is a modality with broad applications in the imaging of the genitourinary tract.? Reviewed are the uses of US imaging the kidneys, prostate, scrotum, and bladder.? Also included are reviews of fetal genitourinary abnormalities, urinary tract infection, and tuberculosis.? The issue is rounded out with articles on contrast agents and on US-guided interventions.
This extensively revised and updated second edition of a widely read classic presents the use of ultrasound in nondestructive evaluation (NDE) inspections. Retaining the first edition's use of wave propagation /scattering theory and linear system theory, this volume also adds significant new material including: the introduction of MATLAB (R) functions and scripts that evaluate key results involving beam propagation and scattering, flaw sizing, and the modeling of ultrasonic systems. elements of Gaussian beam theory and a multi-Gaussian ultrasonic beam model for bulk wave transducers. a new chapter on the connection between ultrasonic modeling and probability of detection (POD) and reliability models. new and improved derivations of ultrasonic measurement models. updated coverage of ultrasonic simulators that have been developed around the world. Students, engineers, and researchers working in the ultrasonic NDE field will find a wealth of information on the modeling of ultrasonic inspections and the fundamental ultrasonic experiments that support those models in this new edition.
This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and seismology communities. A unique feature of this book is that it presents a unified theory of imaging with phased arrays that shows how common imaging methods such as the synthetic aperture focusing technique (SAFT), the total focusing method (TFM), and the physical optics far field inverse scattering (POFFIS) imaging method are all simplified versions of more fundamental and quantitative imaging approaches, called imaging measurement models. To enhance learning, this book first describes the fundamentals of phased array systems using 2-D models, so that the complex 3-D cases normally found in practice can be more easily understood.In addition to giving a detailed discussion of phased array systems, Fundamentals of Ultrasonic Phased Arrays also provides MATLAB(r) functions and scripts, allowing the reader to conduct simulations of ultrasonic phased array transducers and phased array systems with the latest modeling technology."
With recent advances of modern medicine more people reach the "elderly age" around the globe and the number of dementia cases are ever increasing. This book is about various aspects of dementia and provides its readers with a wide range of thought-provoking sub-topics in the field of dementia. The ultimate goal of this monograph is to stimulate other physicians' and neuroscientists' interest to carry out more research projects into pathogenesis of this devastating group of diseases.
While other modalities such as MRI, PET/CT, and MDCT have achieved importance in the field of diagnostic radiology, ultrasound has not stood still. This issue reviews the latest advances in ultrasound technology and provides a basis for its importance in clinical practice.
In this second part of a two-part issue on Pediatric US, imaging of the body with ultrasound is reviewed.? Genitourinary system is covered by articles on urinary tract infections, renal cystic disease, and scrotal ultrasound.? Articles on ultrasound of the gastrointestinal tract in the young infant, the vomiting young infant, the acute abdomen, and liver masses make up the abdominal topics.? Lastly a review of new techniques for pediatric ultrasound is provided.
This issue provides a timely update on the use of ultrasound to image various organ systems as well as the musculoskeletal system.
The Doppler principle is widely applied in astronomy, navigation, geodesy and a number of other disciplines of science and technology. Doppler sonography plays an increasingly important role in many fields of medicine - angiology, neurology, cardiology - an promises many exciting possibilities in the future. Yet, until recently, very little was known about the Austrian scientist whose name has been given to an established and routine medical examination. This book seeks to fill this gap and gives insight into the life of Christian Doppler, not only as a scientist, but also as a persona nd family man. It provides a wealth of new information and many new documents on the man who presented his famous paper "On the coloured light of the double stars" (which appears in facsimile with an English translation) in Prague 150 years ago this year.
This book integrates concepts from physical acoustics with those from linear viscoelasticity and fractional linear viscoelasticity. Compressional waves and shear waves in applications such as medical ultrasound, elastography, and sediment acoustics often follow power law attenuation and dispersion laws that cannot be described with classical viscous and relaxation models. This is accompanied by temporal power laws rather than the temporal exponential responses of classical models. The book starts by reformulating the classical models of acoustics in terms of standard models from linear elasticity. Then, non-classical loss models that follow power laws and which are expressed via convolution models and fractional derivatives are covered in depth. In addition, parallels are drawn to electromagnetic waves in complex dielectric media. The book also contains historical vignettes and important side notes about the validity of central questions. While addressed primarily to physicists and engineers working in the field of acoustics, this expert monograph will also be of interest to mathematicians, mathematical physicists, and geophysicists.
This thesis describes the design and fabrication of ultrasound probes for pedicle screw guidance. The author details the fabrication of a 2MHz radial array for a pedicle screw insertion eliminating the need for manual rotation of the transducer. He includes radial images obtained from successive groupings of array elements in various fluids. He also examines the manner in which it can affect ultrasound propagation.
Musculoskeletal Ultrasound is the latest edition of this comprehensive reference guide to the applications of this imaging technique.The book is edited by US- based experts Marnix van Holsbeeck and Joseph Introcaso. The book is divided into 23 chapters, beginning with the physical principles of ultrasound imaging. Subsequent chapters cover the sonography of particular anatomical structures of the musculoskeletal system, from muscle, ligaments and tendons, to peripheral nerves, skin and bone. Later chapters cover the sonography of broader anatomical areas, including shoulder, arm and hand, leg and foot, chest and abdominal wall. This edition of Musculoskeletal Ultrasound reflects the rapid growth of this technique, with more information on ultrasound anatomy, indications for ultrasound examinations, pathology and signs of disease. A new glossary has been included with important terminology. Key Points Latest edition of this comprehensive reference guide to musculoskeletal ultrasound Previous edition published 2001 (9780323000185) Edited by US experts from Wayne State University School of Medicine, Detroit, and Clinical Neuroscience Programs, Ministry Healthcare Eastern Region, Wisconsin
Based upon the research they have conducted over the past decade in the field of denoising processes for medical ultrasonic imaging, in this book, the authors systematically present despeckling methods for medical ultrasonic images. Firstly, the respective methods are reviewed and divided into five categories. Secondly, after introducing some basic mathematical tools such as wavelet and shearlet transforms, the authors highlight five recently developed despeckling methods for medical ultrasonic images. In turn, simulations and experiments for clinical ultrasonic images are presented for each method, and comparison studies with other well-known existing methods are conducted, showing the effectiveness and superiority of the new methods. Students and researchers in the field of signal and image processing, as well as medical professionals whose work involves ultrasonic diagnosis, will greatly benefit from this book. Familiarizing them with the state of the art in despeckling methods for medical ultrasonic images, it offers a useful reference guide for their study and research work.
The first edition of this definitive text ran to 24 chapters. The second edition, reflecting the explosive growth of interest in echo-enhancement, contains 44. The first section deals with some of the most important emerging issues and technologies and covers harmonic imaging, the use of echo-enhancers to provide quantitative information, and the application of enhanced power Doppler to tissue imaging. The second, on contrast echocardiography, explores the use of echo-enhancement during transesophageal imaging. One chapter describes the use of contrast-enhancement transesophageal imaging to determine coronary flow reserve and another gives a detailed account of the application of the technique to the evaluation of left ventricular function. Other authors describe the intraoperative use of contrast echocardiography and discuss the potential of myocardial contrast echocardiography to replace thallium scintigraphy. Another chapter covers the emerging technique of transient response imaging and its role in the assessment of myocardial perfusion, and two chapters are devoted to three-dimensional contrast echocardiographic assessment of myocardial perfusion. Use of echo-enhancement in the evaluation of peripheral circulation is discussed in chapters on carotid and peripheral arterial flow imaging and others that describe renal and hepatic vascular imaging. The newer applications of echo-enhancement outside the cardiovascular system are described in three chapters devoted to the visualization of tumour vasculature. The final chapters look to the future and cover the imaging of intramyocardial vasculature, the development of site-specific agents and the emergence of the new acoustically active agents.
This book is a practical and evidence-based guide to performing clinical musculoskeletal ultrasound for patients suffering from various rheumatic diseases. It represents the best current thinking on the role of ultrasonography in the assessment of pathology, diagnosis and treatment of these disorders. Following introductory chapters covering fundamental techniques and pitfalls of musculoskeletal ultrasound, the book discusses the uses of ultrasound to identify and monitor different rheumatic conditions, including rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, pediatric musculoskeletal disorders, carpal tunnel syndrome and inflammatory conditions. It concludes with a chapter dedicated to ultrasound-guided interventional procedures, with illustrations depicting patients and probe positioning. Featuring contributions from a large international group of leaders in musculoskeletal ultrasonography, Musculoskeletal Ultrasonography in Rheumatic Diseases is an authoritative reference for rheumatologists, sonographers, radiologists and orthopedic specialists.
Contrast agents for medical ultrasound imaging is a field of growing interest. A large amount of literature has been published on the medical applications of such contrast agents. However, there is no textbook giving a broad overview of the physics and acoustics of the agents. This monograph aims to fill this gap. The book is written by a physicist, from a physics point of view, and it tries to draw links from the physics and acoustics to the medical imaging methods, but medical applications are mainly included for background information. The book consists of nine chapters. The first three chapters give a broad overview of the acoustic theory for bubble-sound interaction, both linear and nonlinear. Most contrast agents are stabilized in a shell, and this shell can have a strong influence on the interaction between the bubbles and the ultrasound. The effect of the shell is given special attention, as this is not easily found in other bubble literature. The following chapters, 4, 5, 6, and 7, describe experimental and theoretical methods used to characterize the acoustic properties of the agents, and results of studies on some agents. Chapter 8 shows how the theory and the experimental results can be combined and used to model various phenomena by means of computer simulations. The main purpose of the simulations is to get insight into the mechanisms behind the described phenomena, not to get accurate predictions and values. The book is aimed at both newcomers into the field, as well as those who are more experienced but want better insight into the acoustics of the contrast bubbles.
This book constitutes the Proceedings of the 26th Symposium on Acoustical Imaging held inWindsor, Ontario, Canada during September 9-12, 2001. This traditional scientific event is recognized as a premier forum for the presentation of advanced research results in both theoretical and experimental development. The lAIS was conceived at a 1967Acoustical Holography meeting in the USA. Since then, these traditional symposia provide an opportunity for specialists who are working in this area to make new acquaintances, renew old friendships and present recent results of their research. Our Symposium has grown significantly in size due to a broad interest in various topics and to the quality of the presentations. For the firsttime in 40 years, the IAIS was held in the province of Ontario in Windsor, Canada's Automotive Capital and City of Roses. The 26th IAIS attracted over 100specialists from 13countries representing this interdisciplinary field in physical acoustics, image processing, applied mathematics, solid-state physics, biology and medicine, industrial applications and quality control technologies. The 26th lAIS was organized in the traditional way with only one addition-a Special Session "History of Acoustical Imaging" with the involvement of such well known scientists as Andrew Briggs, Noriyoshi Chubachi, Robert Green Jr., Joie Jones, Kenneth Erikson, and Bernhard Tittmann. Many of these speakers are well known scientists in their fields and we would like to thank them for making this session extremely successful.
Over the past two decades it has been increasingly recognized that whole-body ultrasound is an invaluable tool in the critically ill. In addition to offering rapid whole-body assessment, it has the advantage of being a bedside approach that is available at all times and can be repeated at will. Accordingly, it permits the immediate institution of appropriate therapeutic management. Whole-Body Ultrasound in the Critically Ill is the sequel to the author s previous books on the subject, which were first published in French in 1992 and 2002 and in English in 2004. This new volume reflects the latest state of knowledge by including a variety of improvements, revised definitions, and updated algorithms. Findings in respect of individual organs are clearly presented, and a particular feature is the in-depth coverage of the lungs, traditionally regarded as an area unsuitable for ultrasound. Throughout, the emphasis is on the practical therapeutic impact of the technique. Its value in a variety of settings, including unexplained shock, management of hemodynamic instability, acute respiratory failure (the BLUE protocol), and the critically ill neonate, is carefully explained. Interventional ultrasound and less widely recognized applications, such as mesenteric infarction, pneumoperitoneum, and intracranial hypertension, are also described. Pitfalls of the technique receive due attention. Today, whole-body ultrasound touches upon every area of critical care. This book, from the chief pioneer in the field, shows that the technique enables critical care physicians to detect therapeutically relevant signs easily and quickly. It will serve as an invaluable guide to the practice of a form of visual medicine."
Reinforce your understanding of Hagen-Ansert's Textbook of Diagnostic Sonography, 9th Edition with this practical workbook! With chapters corresponding to the textbook, this study guide provides exercises allowing you to review, practice, and apply sonography concepts. Case studies offer opportunities to apply your knowledge to the clinical setting. Like the text, this edition of the workbook includes updated images and scans, in addition to content that reflects the newest curriculum standards. It's a useful review and an excellent preparation tool for national board examinations in diagnostic sonography! Review questions are presented in a variety of formats, including multiple-choice, matching, short answer, fill-in-the-blank, and labeling, with answers at the back of the book. Exercises in each chapter provide review and practice with terminology, anatomy, physiology, laboratory values, sonographic anatomy and technique, and pathology. Anatomy labeling activities test your ability to recognize anatomic structures in sonographic images. Review of key terms in each chapter allows you to test your knowledge of the terminology used in the textbook. Case studies include images from the textbook, testing your skills at identifying key anatomy and pathology and in interpreting sonographic findings. Content reviews include multiple-choice questions to test your knowledge of the four main content areas covered on ARDMS board exams: general sonography, pediatric, cardiovascular anatomy, and obstetrics and gynecology. NEW! Updated content keeps pace with the 9th edition of Textbook of Diagnostic Sonography, reflecting the newest curriculum standards and preparing you for the national board examinations. NEW! Updated images and scans reflect the latest advances in the field and help you prepare for boards and for clinicals.
The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: (1) Strain Imaging, (2) Biological and Medical Applications, (3) Acoustic Microscopy, (4) Non-Destructive Evaluation and Industrial Applications, (5) Components and Systems, (6) Geophysics and Underwater Imaging, (7) Physics and Mathematics, (8) Medical Image Analysis, (9) FDTD method and Other Numerical Simulations.
Echocardiography (echo), the use of ultrasound to examine the heart, is a powerful and safe technique which is now widely available for cardiovascular investigation. This simple and highly praised text is a practical and clinically useful introduction to the subject. It aims to explain the echo techniques available, outlines what they are most suitable for, and most importantly puts echo into a clinical perspective. This book will be of value to all those who use or request echo, particularly doctors in training and medical students, but also physicians, surgeons, general practitioners, technicians, nurses and paramedics. This Third Edition takes full account of recent advances in echocardiography. A new chapter on performing and reporting an echo has been added. New text has been added on the role of echo in individuals with cancer and in diseases of the aorta. There are updated and expanded sections on pregnancy, the continuity equation, diastolic function, long-axis function and 3-D echo. There are also updates and more detailed sections on the use of echo in emergency situations, in cardiomyopathies and pericardial diseases, in congenital abnormalities and in cardiac resynchronization therapy. Up-to-date published international guidelines have been referenced throughout. New online content is available in the form of echo video images with accompanying self-assessment questions which will allow the reader to carry out self-assessment of knowledge and to see examples of the echos described in the text. This highly-praised book is a simple guide to a difficult subject, written in a conversational and accessible style. It is essential reading for anyone wishing to learn about echo - doctors in training, cardiac technicians, medical students etc. It provides full practical coverage of the clinical aspects of heart disease It will be of great use to those experienced in echo both as a refresher and an accessible reference source |
![]() ![]() You may like...
Gynecologic Ultrasound: A Problem-Based…
Beryl R. Benacerraf, Steven R. Goldstein, …
Hardcover
R2,801
Discovery Miles 28 010
Update on Ruminant Ultrasound, An Issue…
Sebastien Buczinski
Hardcover
R2,204
Discovery Miles 22 040
Vascular Ultrasound, An Issue of…
Deborah J. Rubens, Edward G Grant
Hardcover
R1,456
Discovery Miles 14 560
|