|
Books > Science & Mathematics > Physics > Classical mechanics
Bioengineering is a rapidly expanding interdisciplinary field that
encompasses application engineering techniques in the field of
mechanical engineering, electrical, electronics and instrumentation
engineering, and computer science and engineering to solve the
problems of the biological world. With the advent to digital
computers and rapidly developing computational techniques, computer
simulations are widely used as a predictive tool to supplement the
experimental techniques in engineering and technology.
Computational biomechanics is a field where the movements
biological systems are assessed in the light of computer algorithms
describing solid and fluid mechanical principles. This book
outlines recent developments in the field of computational
biomechanics. It presents a series of computational techniques that
are the backbone of the field that includes finite element
analysis, multi-scale modelling, fluid-solid interaction, mesh-less
techniques and topological optimization. It also presents a series
of case studies highlighting applications of these techniques in
different biological system and different case studies detailing
the application of the principles described earlier and the
outcomes. This book gives an overview of the current trends and
future directions of research and development in the field of
computational biomechanics. Overall, this book gives insight into
the current trends of application of intelligent computational
techniques used to analyse a multitude of phenomena the field of
biomechanics. It elaborates a series of sophisticated techniques
used for computer simulation in both solid mechanics, fluid
mechanics and fluid-solid interface across different domain of
biological world and across various dimensional scales along with
relevant case studies. The book elucidates how human locomotion to
bacterial swimming, blood flow to sports science, these wide range
of phenomena can be analyzed using computational methods to
understand their inherent mechanisms of work and predict the
behavior of the system. The target audience of the book will be
post-graduate students and researchers in the field of Biomedical
Engineering. Also industry professionals in biomedical engineering
and allied disciplines including but not limited to kinesiologists
and clinicians, as well as, computer engineers and applied
mathematicians working in algorithm development in biomechanics.
Like rocket science or brain surgery, quantum mechanics is
pigeonholed as a daunting and inaccessible topic, which is best
left to an elite or peculiar few. This classification was not
earned without some degree of merit. Depending on perspective;
quantum mechanics is a discipline or philosophy, a convention or
conundrum, an answer or question. Authors have run the gamut from
hand waving to heavy handed in hopes to dispel the common beliefs
about quantum mechanics, but perhaps they continue to promulgate
the stigma. The focus of this particular effort is to give the
reader an introduction, if not at least an appreciation, of the
role that linear algebra techniques play in the practical
application of quantum mechanical methods. It interlaces aspects of
the classical and quantum picture, including a number of both
worked and parallel applications. Students with no prior experience
in quantum mechanics, motivated graduate students, or researchers
in other areas attempting to gain some introduction to quantum
theory will find particular interest in this book.
For 30 years, this book has been the acknowledged standard in
advanced classical mechanics courses. This classic book enables
readers to make connections between classical and modern physics -
an indispensable part of a physicist's education. In this new
edition, Beams Medal winner Charles Poole and John Safko have
updated the book to include the latest topics, applications, and
notation to reflect today's physics curriculum.
Extremum Seeking through Delays and PDEs, the first book on the
topic, expands the scope of applicability of the extremum seeking
method, from static and finite-dimensional systems to
infinite-dimensional systems. Readers will find: Numerous
algorithms for model-free real-time optimization are developed and
their convergence guaranteed. Extensions from single-player
optimization to noncooperative games, under delays and pdes, are
provided. The delays and pdes are compensated in the control
designs using the pde backstepping approach, and stability is
ensured using infinite-dimensional versions of averaging theory.
Accessible and powerful tools for analysis. This book is intended
for control engineers in all disciplines (electrical, mechanical,
aerospace, chemical), mathematicians, physicists, biologists, and
economists. It is appropriate for graduate students, researchers,
and industrial users.
This unique compendium introduces the field of numerical modelling
of water waves. The topics included the most widely used water wave
modelling approaches, presented in increasing order of complexity
and categorized into phase-averaged and phase-resolving at the
highest level.A comprehensive state-of-the-art review is provided
for each chapter, comprising the historical development of the
method, the most relevant models and their practical applications.
A full description on the method's underlying assumptions and
limitations are also provided. The final chapter features coupling
among different models, outlining the different types of
implementations, highlighting their pros and cons, and providing
numerous relevant examples for full context.The useful reference
text benefits professionals, researchers, academics, graduate and
undergraduate students in wave mechanics in general and coastal and
ocean engineering in particular.
It was not until 1971 that the authority for defining scientific
units, the General Conference of Weights and Measures got around to
defining the unit that is the basis of chemistry (the mole, or the
quantity of something). Yet for all this tardiness in putting the
chemical sciences on a sound quantitative basis, chemistry is an
old and venerable subject and one naturally asks the question, why?
Well, the truth is that up until the mid-1920s, many physicists did
not believe in the reality of molecules. Indeed, it was not until
after the physics community had accepted Ernest Rutherford's 1913
solar-system-like model of the atom, and the quantum mechanical
model of the coupling of electron spins in atoms that physicists
started to take seriously the necessity of explaining the chemical
changes that chemists had been observing, investigating and
recording since the days of the alchemists.
Optical properties, particularly in the infrared range of
wavelengths, continue to be of enormous interest to both material
scientists and device engineers. The need for the development of
standards for data of optical properties in the infrared range of
wavelengths is very timely considering the on-going transition of
nano-technology from fundamental R&D to manufacturing.
Radiative properties play a critical role in the processing,
process control and manufacturing of semiconductor materials,
devices, circuits and systems. The design and implementation of
real-time process control methods in manufacturing requires the
knowledge of the radiative properties of materials. Sensors and
imagers operate on the basis of the radiative properties of
materials. This book reviews the optical properties of various
semiconductors in the infrared range of wavelengths. Theoretical
and experimental studies of the radiative properties of
semiconductors are presented. Previous studies, potential
applications and future developments are outlined. In Chapter 1, an
introduction to the radiative properties is presented. Examples of
instrumentation for measurements of the radiative properties is
described in Chapter 2. In Chapters 3-11, case studies of the
radiative properties of several semiconductors are elucidated. The
modeling and applications of these properties are explained in
Chapters 12 and 13, respectively. In Chapter 14, examples of the
global infrastructure for these measurements are illustrated.
This book is a short introduction to classical field theory, most
suitable for undergraduate students who have had at least
intermediate-level courses in electromagnetism and classical
mechanics. The main theme of the book is showcasing role of fields
in mediating action-at-a-distance interactions. Suitable technical
machinery is developed to explore at least some aspect of each of
the four known fundamental forces in nature. Beginning with the
physically-motivated introduction to field theory, the text covers
the relativistic formulation of electromagnetism in great detail so
that aspects of gravity and the nuclear interaction not usually
encountered at the undergraduate level can be covered by using
analogies with familiar electromagentism. Special topics such as
the behavior of gravity in extra, compactified dimensions, magnetic
monopoles and electromagnetic duality, and the Higgs mechanism are
also briefly considered.
|
You may like...
Ongeskonde
Alwyn Uys
Paperback
R255
R239
Discovery Miles 2 390
|