![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics
This book presents experimental techniques in the field of aerodynamics, a discipline that is essential in numerous areas, such as the design of aerial and ground vehicles and engines, the production of energy, and understanding the wind resistance of buildings. Aerodynamics is not only concerned with improving the performance and comfort of vehicles, but also with reducing their environmental impact. The book provides updated information on the experimental and technical methods used by aerodynamicists, engineers and researchers. It describes the various types of wind tunnels - from subsonic to hypersonic - as well as the problems posed by their design and operation. The book also focuses on metrology, which has allowed us to gain a detailed understanding of the local properties of flows, and examines current developments toward creating a methodology combining experiments and numerical simulations: the computer-assisted wind tunnel. Lastly, it offers an overview of experimental aerodynamics based on a prospective vision of the discipline, and discusses potential futures challenges. The book can be used as a textbook for graduate courses in aerodynamics, typically offered to students of aerospace and mechanical engineering programs, and as a learning tool for professionals and engineers in the fields of aerodynamics, aeronautics and astronautics automobile.
The book presents a state-of-the-art overview of current developments in the field in a way accessible to attendees coming from a variety of fields. Relevant examples are turbulence research, (environmental) fluid mechanics, lake hydrodynamics and atmospheric physics. Topics discussed range from the fundamentals of rotating and stratified flows, mixing and transport in stratified or rotating turbulence, transport in the atmospheric boundary layer, the dynamics of gravity and turbidity currents eventually with effects of background rotation or stratification, mixing in (stratified) lakes, and the Lagrangian approach in the analysis of transport processes in geophysical and environmental flows. The topics are discussed from fundamental, experimental and numerical points of view. Some contributions cover fundamental aspects including a number of the basic dynamical properties of rotating and or stratified (turbulent) flows, the mathematical description of these flows, some applications in the natural environment, and the Lagrangian statistical analysis of turbulent transport processes and turbulent transport of material particles (including, for example, inertial and finite-size effects). Four papers are dedicated to specific topics such as transport in (stratified) lakes, transport and mixing in the atmospheric boundary layer, mixing in stratified fluids and dynamics of turbidity currents. The book is addressed to doctoral students and postdoctoral researchers, but also to academic and industrial researchers and practicing engineers, with a background in mechanical engineering, applied physics, civil engineering, applied mathematics, meteorology, physical oceanography or physical limnology.
Interest in the area of control of systems defined by partial differential Equations has increased strongly in recent years. A major reason has been the requirement of these systems for sensible continuum mechanical modelling and optimization or control techniques which account for typical physical phenomena. Particular examples of problems on which substantial progress has been made are the control and stabilization of mechatronic structures, the control of growth of thin films and crystals, the control of Laser and semi-conductor devices, and shape optimization problems for turbomachine blades, shells, smart materials and microdiffractive optics. This volume contains original articles by world reknowned experts in the fields of optimal control of partial differential equations, shape optimization, numerical methods for partial differential equations and fluid dynamics, all of whom have contributed to the analysis and solution of many of the problems discussed. The collection provides a state-of-the-art overview of the most challenging and exciting recent developments in the field. It is geared towards postgraduate students and researchers dealing with the theoretical and practical aspects of a wide variety of high technology problems in applied mathematics, fluid control, optimal design, and computer modelling.
This book presents a snapshot of the state-of-art in the field of turbulence modeling, with an emphasis on numerical methods. Topics include direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation and many more. It includes both theoretical contributions and experimental works, as well as chapters derived from keynote lectures, presented at the fourth Turbulence and Interactions Conference (TI 2015), which was held on June 11-14 in Cargese, Corsica, France. This multifaceted collection, which reflects the conferences emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a timely guide for students, researchers and professionals in the field of applied computational fluid dynamics, turbulence modeling and related areas.
This multi-contributed volume provides a practical, applications-focused introduction to nonlinear acoustical techniques for nondestructive evaluation. Compared to linear techniques, nonlinear acoustical/ultrasonic techniques are much more sensitive to micro-cracks and other types of small distributed damages. Most materials and structures exhibit nonlinear behavior due to the formation of dislocation and micro-cracks from fatigue or other types of repetitive loadings well before detectable macro-cracks are formed. Nondestructive evaluation (NDE) tools that have been developed based on nonlinear acoustical techniques are capable of providing early warnings about the possibility of structural failure before detectable macro-cracks are formed. This book presents the full range of nonlinear acoustical techniques used today for NDE. The expert chapters cover both theoretical and experimental aspects, but always with an eye towards applications. Unlike other titles currently available, which treat nonlinearity as a physics problem and focus on different analytical derivations, the present volume emphasizes NDE applications over detailed analytical derivations. The introductory chapter presents the fundamentals in a manner accessible to anyone with an undergraduate degree in Engineering or Physics and equips the reader with all of the necessary background to understand the remaining chapters. This self-contained volume will be a valuable reference to graduate students through practising researchers in Engineering, Materials Science, and Physics. Represents the first book on nonlinear acoustical techniques for NDE applications Emphasizes applications of nonlinear acoustical techniques Presents the fundamental physics and mathematics behind nonlinear acoustical phenomenon in a simple, easily understood manner Covers a variety of popular NDE techniques based on nonlinear acoustics in a single volume
Conventional ultrasonic methods based on ultrasonic characteristics in the linear elastic region are mainly sensitive to mature defects but are much less responsive to micro-damage or incipient material degradation. Recently, nonlinear ultrasonic characteristics beyond the linear ultrasonic amplitude range have been studied as a method for overcoming this limitation, and hence, many researchers are engaged in theoretical, experimental, and various application studies. However, the nonlinear ultrasonic characteristics are quite exacting compared to the linear phenomena so that they require vast experience and high proficiency in order to obtain proper experimental data. Actually, many researchers, especially beginners including graduate students, have difficulty in reliably measuring nonlinear ultrasonic characteristics. This book provides key technological know-how from experts with years of experience in this field, which will help researchers and engineers to obtain a clear understanding and high quality data in the nonlinear ultrasonic experiments and applications.
This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises Review from the Textbook & Academic Authors Association that awarded the book with the 2017 Most Promising New Textbook Award: "Compared to other books in this subject, we find this one to be very up-to-date and effective at explaining this complicated subject. We certainly would highly recommend it as a text for students and practicing professionals who wish to expand their understanding of modern fluid mechanics."
This book presents recent research in the field of transport phenomena in porous materials, including heat and mass transfer, drying and adsorption. Covering a comprehensive range of topics related to the transport phenomenon in engineering (including state-of-the-art, theory and technological applications), it discusses some of the most important theoretical advances, computational developments and applications in porous materials domain. Providing an update on the current state of knowledge, this self-contained reference resource will appeal to scientists, researchers and engineers in a variety of disciplines, such as chemical, civil, agricultural and mechanical engineering.
This book presents essential methods of deformation compatibility control, and explicitly addresses the implied conditions on the methods' deformation compatibility. Consequently, these conditions can be considered in engineering structure design, while the conditions on stable equilibrium can be taken into account in the design method. Thus, the designed deformation and the actual deformation of the respective structure are approximately identical, guaranteeing both the flexibility of the construction material in force transmission and the equilibrium of force in the structure. Though equilibrium theory in engineering structures has been extensively studied, there has been comparatively little research on compatibility. In the limited researches available, the topics are primarily the theories and assumptions on the deformation compatibility, while few systematic works focus on the mechanical theoretical principles and methods of deformation compatibility control. As such, the flexibility of the construction material in force transmission and the stable equilibrium of the structure as a whole cannot be guaranteed based on these research results. Successfully addressing this important gap in the literature, the book is intended for researchers and postgraduates in engineering mechanics, civil engineering and related areas.
This book examines the human auditory effects of exposure to directed beams of high-power microwave pulses, which research results have shown can cause a cascade of health events when aimed at a human subject or the subject's head. The book details multidisciplinary investigations using physical theories and models, physiological events and phenomena, and computer analysis and simulation. Coverage includes brain anatomy and physiology, dosimetry of microwave power deposition, microwave auditory effect, interaction mechanisms, shock/pressure wave induction, Havana syndrome, and application in microwave thermoacoustic tomography (MTT). The book will be welcomed by scientists, academics, health professionals, government officials, and practicing biomedical engineers as an important contribution to the continuing study of the effects of microwave pulse absorption on humans.
This book is about field responsive fluids as smart materials, which includes magneto-rheological (MR) fluids, electro-rheological (ER) fluids and ferrofluids. It reviews the previous works and considers all the aspects that can help researchers and industries to choose proper materials as MR fluid constituents. Topics in magnetism and types of magnetic materials are presented. This includes the effect of magnetizable particles behaviors such as size, shape and density. The type of materials on the rheological properties is also compared for MR, ER and ferro-fluids. The second part of the book discusses advanced topics for MR, ER and ferro-fluids comparing some of the properties between the field responsive fluids. This book appeals to engineers, researchers and practitioners in the area of materials and mechanical engineering with interest in the field responsive fluids.
This edited monograph contains the proceedings of the International Shock Interaction Symposium, which emerged as an heir to both the Mach Reflection and Shock Vortex Interaction Symposia. These scientific biannual meetings provide an ideal platform to expose new developments and discuss recent challenges in the field of shock wave interaction phenomena. The goal of the symposia is to offer a forum for international interaction between young and established scientists in the field of shock and blast wave interaction phenomena. The target audience of this book comprises primarily researchers and experts in the field of shock waves, but the book may also be beneficial for young scientists and graduate students alike.
This book comprises twelve articles which cover a range of topics from musical instrument acoustics to issues in psychoacoustics and sound perception as well as neuromusicology. In addition to experimental methods and data acquisition, modeling (such as FEM or wave field synthesis) and numerical simulation plays a central role in studies addressing sound production in musical instruments as well as interaction of radiated sound with the environment. Some of the studies have a focus on psychoacoustic aspects in regard to virtual pitch and timbre as well as apparent source width (for techniques such as stereo or ambisonics) in music production. Since musical acoustics imply subjects playing instruments or singing in order to produce sound according to musical structures, this area is also covered including a study that presents an artificial intelligent agent capable to interact with a real ('analog') player in musical genres such as traditional and free jazz.
In this book, leading theorists present new contributions and reviews addressing longstanding challenges and ongoing progress in spacetime physics. In the anniversary year of Einstein's General Theory of Relativity, developed 100 years ago, this collection reflects the subsequent and continuing fruitful development of spacetime theories. The volume is published in honour of Carl Brans on the occasion of his 80th birthday. Carl H. Brans, who also contributes personally, is a creative and independent researcher and one of the founders of the scalar-tensor theory, also known as Jordan-Brans-Dicke theory. In the present book, much space is devoted to scalar-tensor theories. Since the beginning of the 1990s, Brans has worked on new models of spacetime, collectively known as exotic smoothness, a field largely established by him. In this Festschrift, one finds an outstanding and unique collection of articles about exotic smoothness. Also featured are Bell's inequality and Mach's principle. Personal memories and historical aspects round off the collection.
We inhabit a world of fluids, including air (a gas), water (a liquid), steam (vapour) and the numerous natural and synthetic fluids which are essential to modern-day life. Fluid mechanics concerns the way fluids flow in response to imposed stresses. The subject plays a central role in the education of students of mechanical engineering, as well as chemical engineers, aeronautical and aerospace engineers, and civil engineers. This textbook includes numerous examples of practical applications of the theoretical ideas presented, such as calculating the thrust of a jet engine, the shock- and expansion-wave patterns for supersonic flow over a diamond-shaped aerofoil, the forces created by liquid flow through a pipe bend and/or junction, and the power output of a gas turbine. The first ten chapters of the book are suitable for first-year undergraduates. The latter half covers material suitable for fluid-mechanics courses for upper-level students Although knowledge of calculus is essential, this text focuses on the underlying physics. The book emphasizes the role of dimensions and dimensional analysis, and includes more material on the flow of non-Newtonian liquids than is usual in a general book on fluid mechanics - a reminder that the majority of synthetic liquids are non-Newtonian in character.
This book investigates collisions occurring in the motion of solids, in the motion of fluids but also in the motion of pedestrians in crowds. The duration of these presented collisions is short compared to the whole duration of the motion: they are assumed instantaneous. The innovative concept demonstrated in this book is that a system made of two solids, is deformable because their relative position changes. The definition of the velocities of deformation of the system introduced in the classical developments of mechanics, the principle of the virtual work and the laws of thermodynamics, allows a large range of applications such as crowd motions, debris flow motions, and shape memory alloys motions. The set of the applications is even larger: social sciences and mechanics are unified to predict the motion of crowds with application to transport management and to evacuation of theaters management.
The purpose of this text is to introduce engineering and science students to the basic underlying physics and chemistry concepts that form the foundation of plasma science and engineering. It is an accessible primer directed primarily at those students who, like the general public, simply do not understand exactly what a plasma or gas discharge is nor do they even necessarily have the fundamental background in statistical thermodynamics, gas dynamics, fluid dynamics, or solid state physics to effectively understand many plasma and gas discharge principles. At the conclusion of this text, the reader should understand what an ion is, how they move, the equations we use to describe these basic concepts, and how they link to the aforementioned topics of plasmas and gas discharges. This book is focused on specific concepts that are important to non-equilibrium, low temperature gas discharges. These discharges fi nd wide applicability today and are of significant interest to the scientifi c and engineering communities.
Progress in the numerical simulation of turbulence has been rapid in the 1990s. New techniques both for the numerical approximation of the Navier-Stokes equations and for the subgrid-scale models used in large-eddy simulation have emerged and are being widely applied for both fundamental and applied engineering studies, along with ideas for the performance and use of simulation for compressible, chemically reacting and transitional flows. This collection of papers from the second ERCOFTAC Workshop on Direct and Large-Eddy Simulation, held in Grenoble in September 1996, presents the research being undertaken in Europe and Japan on these topics. Describing in detail the ambitious use of DNS for fundamental studies and of LES for complex flows of potential and actual engineering importance, this volume should be of interest to researchers active in the area.
This book lays the foundations of gas- and fluid dynamics.The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.
This unique thesis covers all aspects of theories of gravity beyond Einstein's General Relativity, from setting up the equations that describe the evolution of perturbations, to determining the best-fitting parameters using constraints like the microwave background radiation, and ultimately to the later stages of structure formation using state-of-the-art N-body simulations and comparing them to observations of galaxies, clusters and other large-scale structures. This truly ground-breaking work puts the study of modified gravity models on the same footing as the standard model of cosmology. Since the discovery of the accelerating expansion of the Universe, marked by the awarding of the 2011 Nobel Prize in Physics, there has been a growing interest in understanding what drives that acceleration. One possible explanation lies in theories of gravity beyond Einstein's General Relativity. This thesis addresses all aspects of the problem, an approach that is crucial to avoiding potentially catastrophic biases in the interpretation of upcoming observational missions.
This book collects research papers on the philosophical foundations of probability, causality, spacetime and quantum theory. The papers are related to talks presented in six subsequent workshops organized by The Budapest-Krakow Research Group on Probability, Causality and Determinism. Coverage consists of three parts. Part I focuses on the notion of probability from a general philosophical and formal epistemological perspective. Part II applies probabilistic considerations to address causal questions in the foundations of quantum mechanics. Part III investigates the question of indeterminism in spacetime theories. It also explores some related questions, such as decidability and observation. The contributing authors are all philosophers of science with a strong background in mathematics or physics. They believe that paying attention to the finer formal details often helps avoiding pitfalls that exacerbate the philosophical problems that are in the center of focus of contemporary research. The papers presented here help make explicit the mathematical-structural assumptions that underlie key philosophical argumentations. This formally rigorous and conceptually precise approach will appeal to researchers and philosophers as well as mathematicians and statisticians.
This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology, including automotive dynamics, control for electric and hybrid vehicles, and autodriver algorithm for autonomous vehicles. Also included are discussions on renewable energy plants, data modeling, driver-aid methods, and low-frequency vibration. Chapters are based on invited contributions from world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy effective systems. This book is appropriate for researchers, students, and practising engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems. Presents a broad range of practical topics and approaches; Explains approaches to better, safer, and cheaper systems; Emphasises automotive applications, physical meaning, and methodologies. |
![]() ![]() You may like...
Technological Innovation for Applied AI…
Luis M. Camarinha-Matos, Pedro Ferreira, …
Hardcover
R3,419
Discovery Miles 34 190
Ecosystems and Human Well-Being: Current…
Millennium Ecosystem Assessment
Paperback
A Focus on Multiplication and Division…
Elizabeth T. Hulbert, Marjorie M. Petit, …
Paperback
R1,276
Discovery Miles 12 760
Internet of Medical Things for Smart…
Chinmay Chakraborty, Amit Banerjee, …
Hardcover
R5,124
Discovery Miles 51 240
Yes, but why? Teaching for understanding…
Ed Southall
Hardcover
Arithmetic Ninja for Ages 9-10 - Maths…
Andrew Jennings, Sarah Farrell
Paperback
R669
Discovery Miles 6 690
|