![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics
This book is intended for researchers, graduate students and engineers in the fields of structure-borne sound, structural dynamics, and noise and vibration control. Based on vibration differential equations, it presents equations derived from the exponential function in the time domain, providing a unified framework for structural vibration analysis, which makes it more regular and normalized. This wave propagation approach (WPA) divides structures at "discontinuity points," and the waves show characteristics of propagation, reflection, attenuation, and waveform conversion. In each segment of the system between two "discontinuity points," the governing equation and constraint are expressed accurately, allowing the dynamic properties of complex systems to be precisely obtained. Starting with basic structures such as beams and plates, the book then discusses theoretical research on complicated and hybrid dynamical systems, and demonstrates that structural vibration can be analyzed from the perspective of elastic waves by applying WPA.
This book focuses on a critical discussion of the status and prospects of current approaches in quantum mechanics and quantum field theory, in particular concerning gravity. It contains a carefully selected cross-section of lectures and discussions at the seventh conference "Progress and Visions in Quantum Theory in View of Gravity" which took place in fall 2018 at the Max Planck Institute for Mathematics in the Sciences in Leipzig. In contrast to usual proceeding volumes, instead of reporting on the most recent technical results, contributors were asked to discuss visions and new ideas in foundational physics, in particular concerning foundations of quantum field theory. A special focus has been put on the question of which physical principles of quantum (field) theory can be considered fundamental in view of gravity. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at late stages of transition. These include secondary instabilities and nonlinear features of boundary-layer perturbations that lead to the final breakdown to turbulence. Thus, the reader is provided with a step-by-step approach that covers the milestones and recent advances in the laminar-turbulent transition. Special aspects of instability and transition are discussed through the book and are intended for research scientists, while the main target of the book is the student in the fundamentals of fluid mechanics. Computational guides, recommended exercises, and PowerPoint multimedia notes based on results of real scientific experiments supplement the monograph. These are especially helpful for the neophyte to obtain a solid foundation in hydrodynamic stability. To access the supplementary material go to extras.springer.com and type in the ISBN for this volume.
This book contains selected and expanded contributions presented at the 15th Conference on Acoustics and Vibration of Mechanical Structures held in Timisoara, Romania, May 30-31, 2019. The conference focused on a broad range of topics related to acoustics and vibration, such as analytical approaches to nonlinear noise and vibration problems, environmental and occupational noise, structural vibration, biomechanics and bioacoustics, as well as experimental approaches to vibration problems in industrial processes. The different contributions also address the analytical, numerical and experimental techniques applicable to analyze linear and non-linear noise and vibration problems (including strong nonlinearity) and they are primarily intended to emphasize the actual trends and state-of-the-art developments in the above mentioned topics. The book is meant for academics, researchers and professionals, as well as PhD students concerned with various fields of acoustics and vibration of mechanical structures.
A consequence of the description of the superfluid condensate in superfluid He or in superconductors as a single macroscopic quantum state is the quantization of circulation, resulting in quantized vortex lines. This book draws no distinction between superfluid He3 and He4 and superconductors. It examines theoretical and experimental progress in understanding of the vortex state in both superconductors and superfluids, from lectures given by both experimentalists and theoreticians, who gathered in Cargese for a NATO ASI. The peculiar features related to short coherence lengths, 2D geometry, high temperatures, disorder and pinning are discussed.
Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field.
This the sixth volume of six from the Annual Conference of the Society for Experimental Mechanics, 2010, brings together 128 chapters on Experimental and Applied Mechanics. It presents early findings from experimental and computational investigations including High Accuracy Optical Measurements of Surface Topography, Elastic Properties of Living Cells, Standards for Validating Stress Analyses by Integrating Simulation and Experimentation, Efficiency Enhancement of Dye-sensitized Solar Cell, and Blast Performance of Sandwich Composites With Functionally Graded Core.
This is the first volume of three, devoted to Mechanics. This book contains classical mechanics problems including kinematics and statics. It is recommended as a supplementary textbook for undergraduate and graduate students from mechanical and civil engineering, as well as for physical scientists and engineers. It contains a basic introduction to classical mechanics, including fundamental principles, statics, and the geometry of masses, as well as thorough discussion on kinematics.
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
Large-scale winds and currents tend to balance Coriolis and
pressure gradient forces. The time evolution of these winds and
currents is the subject of the quasi-geostrophic theory.
This book discusses the conceptual theory of structural dynamics, using simplified methods and clear, concise explanations. It illustrates all the hypotheses in a simple and effective way and describes in detail the derivation of all related formulations. Further, comprehensive step-by-step explanations combined with conceptual derivations, drawings and figures allow readers to grasp all the analytical formulations related to the dynamics of structures. Covering free and forced vibrations of single- and multi-degree of freedom systems represented as structure, subjected to dynamic load, the book also explores the most common types of dynamic loads applicable to structures, such as harmonic loads, impact loads and earthquakes, presenting relevant details, derivations and effective problems to explain the concept for various conditions. In addition, each chapter provides examples at different levels to help students, researchers and engineers gain a better understanding of the topics better, and includes numerous real-world problems to familiarize readers with the challenges related to structural engineering.
This book provides a general introduction to the rapidly developing astrophysical frontier of stellar tidal disruption, but also details original thesis research on the subject. This work has shown that recoiling black holes can disrupt stars far outside a galactic nucleus, errors in the traditional literature have strongly overestimated the maximum luminosity of "deeply plunging" tidal disruptions, the precession of transient accretion disks can encode the spins of supermassive black holes, and much more. This work is based on but differs from the original thesis that was formally defended at Harvard, which received both the Roger Doxsey Award and the Chambliss Astronomy Achievement Student Award from the American Astronomical Society.
The book provides personal memories along with description of scientific works written by ex-graduate students and research associates of the late Professor Glass. The described research work covers a wide range of shock wave phenomena, resulting from seeds planted by Professor Glass. Professor Glass was born in Poland in 1918. He immigrated together with his parents to Canada at the age of 12 and received all his professional education at the University of Toronto, Canada. He became a world recognized expert in shock wave phenomena, and during his 45 years of active research he supervised more than 125 master and doctoral students, post-doctoral fellows and visiting research associates. In this book seven of his past students/research-associates describe their personal memories of Professor Glass and present some of their investigations in shock wave phenomena which sprung from their past work with Professor Glass. Specifically, these investigations include underwater shock waves, shock/bubble interaction, medical applications of shock wave, various types of shock tubes and shock tube techniques, shock wave attenuation and different types of shock wave reflections.
Transport phenomena problems that occur in engineering and physics are often multi-dimensional and multi-phase in character. When taking recourse to numerical methods the spectral method is particularly useful and efficient. The book is meant principally to train students and non-specialists to use the spectral method for solving problems that model fluid flow in closed geometries with heat or mass transfer. To this aim the reader should bring a working knowledge of fluid mechanics and heat transfer and should be readily conversant with simple concepts of linear algebra including spectral decomposition of matrices as well as solvability conditions for inhomogeneous problems. The book is neither meant to supply a ready-to-use program that is all-purpose nor to go through all manners of mathematical proofs. The focus in this tutorial is on the use of the spectral methods for space discretization, because this is where most of the difficulty lies. While time dependent problems are also of great interest, time marching procedures are dealt with by briefly introducing and providing a simple, direct, and efficient method. Many examples are provided in the text as well as numerous exercises for each chapter. Several of the examples are attended by subtle points which the reader will face while working them out. Some of these points are deliberated upon in endnotes to the various chapters, others are touched upon in the book itself.
Various nanoclusters and microparticles are considered in excited and ionized gases, as well as various processes with their participation. The concepts of these processes were developed 50 - 100 years ago mostly for dense media, and basing on these concepts, we analyze these processes in gases in two opposite regimes, so that in the kinetic regime surrounding atoms of a buffer gas do not partake in processesinvolving small particles, and the diffusion regime corresponds to a dense gas where interaction of small particles with a buffer gas subjects to laws of hydrodynamics. For calculation or estimation of the rates of these processes, we are based on the liquid drop model for small particles which was introduced in physics by N. Bohr about 80 years ago for the analysis of properties of atomic nuclei including the nuclear fusion and the hard sphere model (or the model of billiard balls) which was used by J. C. Maxwell 150 years ago and helped to create the kinetic theory of gases. These models along with the analysis of their accuracy allow one to study various processes, such as transport processes in gases involving small particles, charging of small particles in gases, chemical processes, atom attachment and quenching of excited atomic particles on the surface of a small particle, nucleation processes for small particles including coagulation, coalescence and growth of fractal aggregates, chain aggregates, fractal fibres and aerogels. Each analysis is finished by analytic formulas or simple models which allow us to calculate the rate of a certain real process with a known accuracy or to estimate this, and criteria of validity are given for these expressions obtained. Examples of real objects and processes involving small particles are analyzed.
This is the second edition of the book "Thermodynamics of Fluids under Flow," which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vazquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vazquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience."
Dynamical Problems for Geometrically Exact Theories of Nonlinearly Viscoelastic Rods.- The Limits of Hamiltonian Structures in Three-Dimensional Elasticity, Shells, and Rods.- The Membrane Shell Model in Nonlinear Elasticity: A Variational Asymptotic Derivation.- Gravity Waves on the Surface of the Sphere.- A Nonlinear Extensible 4-Node Shell Element Based on Continuum Theory and Assumed Strain Interpolations.- Multilayer Beams: A Geometrically Exact Formulation.- Obstructions to Quantization.- An Impetus-Striction Simulation of the Dynamics of an Elastica.- A Symplectic Integrator for Riemannian Manifolds.- Time Integration and Discrete Hamiltonian Systems.- Problems and Progress in Microswimming.- Symmetry Methods in Collisionless Many-Body Problems.- Mathematical Analysis of Sideband Instabilities with Application to Rayleigh-Benard Convection.- KAM Theory Near Multiplicity One Resonant Surfaces in Perturbations of A-Priori Stable Hamiltonian Systems.- Constrained Euler Buckling.- Continuity Properties and Global Attractors of Generalized Semiflows and the Navier-Stokes Equations.- Stacked Lagrange Tops.- On the Bifurcation and Stability of Rigidly Rotating Inviscid Liquid Bridges.
Useful as a reference for engineers in industry and as an advanced
level text for graduate engineering students, Multiphase Flow and
Fluidization takes the reader beyond the theoretical to demonstrate
how multiphase flow equations can be used to provide applied,
practical, predictive solutions to industrial fluidization
problems. Written to help advance progress in the emerging science
of multiphase flow, this book begins with the development of the
conservation laws and moves on through kinetic theory, clarifying
many physical concepts (such as particulate viscosity and solids
pressure) and introducing the new dependent variable--the volume
fraction of the dispersed phase. Exercises at the end of each
chapterare provided for further study and lead into applications
not covered in the text itself.
..".The Multiversal book series is equally unique, providing book-length extensions of the lectures with enough additional depth for those who truly want to explore these fields, while also providing thekind of clarity that is appropriate for interested lay people to grasp the general principles involved." - Lawrence M. Krauss Cosmic Update Covers: A novel approach to uncover the dark faces of the Standard Model of cosmology.The possibility that Dark Energy and Dark Matter are manifestations of the inhomogeneous geometry of our Universe.On the history of cosmological model building and the general architecture of cosmological modes.Illustrations on the Large Scale Structure of the Universe.A new perspective on the classical static Einstein Cosmos.Global properties of World Models including their Topology.The Arrow of Time in a Universe with a Positive Cosmological Constant.Exploring the consequences of a fundamental Cosmological Constant for our Universe. Exploring why the current observed acceleration of the Universe may not be its final destiny.Demonstrating that nature forbids the existence of a pure Cosmological Constant.Our current understanding of the long term (in time scales that greatly exceed the current age of the Universe) future of the Universe.The long term fate and eventual destruction of the astrophysical objects that populate the universe --including clusters, galaxies, stars, planets, and black holes. The material is presented in a layperson-friendly language followed by addition technical sections that explain the basic equations and principles. This feature is very attractive to readers who want to learn more about the theories involved beyond the basic description. "Multiversal Journeys is a trademark of Farzad Nekoogar and Multiversal Journeys, a 501 (c) (3) nonprofit organization.""
This book introduces a variety of statistical tools for characterising and designing the dynamical features of complex quantum systems. These tools are applied in the contexts of energy transfer in photosynthesis, and boson sampling. In dynamical quantum systems, complexity typically manifests itself via the interference of a rapidly growing number of paths that connect the initial and final states. The book presents the language of graphs and networks, providing a useful framework to discuss such scenarios and explore the rich phenomenology of transport phenomena. As the complexity increases, deterministic approaches rapidly become intractable, which leaves statistics as a viable alternative.
This book provides the mathematical foundations of the theory of hyperhamiltonian dynamics, together with a discussion of physical applications. In addition, some open problems are discussed. Hyperhamiltonian mechanics represents a generalization of Hamiltonian mechanics, in which the role of the symplectic structure is taken by a hyperkahler one (thus there are three Kahler/symplectic forms satisfying quaternionic relations). This has proved to be of use in the description of physical systems with spin, including those which do not admit a Hamiltonian formulation. The book is the first monograph on the subject, which has previously been treated only in research papers.
This volume reports results from the German research initiative MUNA (Management and Minimization of Errors and Uncertainties in Numerical Aerodynamics), which combined development activities of the German Aerospace Center (DLR), German universities and German aircraft industry. The main objective of this five year project was the development of methods and procedures aiming at reducing various types of uncertainties that are typical of numerical flow simulations. The activities were focused on methods for grid manipulation, techniques for increasing the simulation accuracy, sensors for turbulence modelling, methods for handling uncertainties of the geometry and grid deformation as well as stochastic methods for quantifying aleatoric uncertainties.
This contributed volume is based on talks given at the August 2016 summer school "Fluids Under Pressure," held in Prague as part of the "Prague-Sum" series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics. |
![]() ![]() You may like...
Handbook of Research Methods for Supply…
Stephen Childe, Anabela Soares
Hardcover
R7,099
Discovery Miles 70 990
Happy Customers Everywhere - How Your…
Bernd Schmitt, Glenn Van Zutphen
Hardcover
![]()
|