![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics
This edited monograph contains the proceedings of the International Shock Interaction Symposium, which emerged as an heir to both the Mach Reflection and Shock Vortex Interaction Symposia. These scientific biannual meetings provide an ideal platform to expose new developments and discuss recent challenges in the field of shock wave interaction phenomena. The goal of the symposia is to offer a forum for international interaction between young and established scientists in the field of shock and blast wave interaction phenomena. The target audience of this book comprises primarily researchers and experts in the field of shock waves, but the book may also be beneficial for young scientists and graduate students alike.
This book comprises twelve articles which cover a range of topics from musical instrument acoustics to issues in psychoacoustics and sound perception as well as neuromusicology. In addition to experimental methods and data acquisition, modeling (such as FEM or wave field synthesis) and numerical simulation plays a central role in studies addressing sound production in musical instruments as well as interaction of radiated sound with the environment. Some of the studies have a focus on psychoacoustic aspects in regard to virtual pitch and timbre as well as apparent source width (for techniques such as stereo or ambisonics) in music production. Since musical acoustics imply subjects playing instruments or singing in order to produce sound according to musical structures, this area is also covered including a study that presents an artificial intelligent agent capable to interact with a real ('analog') player in musical genres such as traditional and free jazz.
This book presents a snapshot of the state-of-art in the field of turbulence modeling, with an emphasis on numerical methods. Topics include direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation and many more. It includes both theoretical contributions and experimental works, as well as chapters derived from keynote lectures, presented at the fourth Turbulence and Interactions Conference (TI 2015), which was held on June 11-14 in Cargese, Corsica, France. This multifaceted collection, which reflects the conferences emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a timely guide for students, researchers and professionals in the field of applied computational fluid dynamics, turbulence modeling and related areas.
We inhabit a world of fluids, including air (a gas), water (a liquid), steam (vapour) and the numerous natural and synthetic fluids which are essential to modern-day life. Fluid mechanics concerns the way fluids flow in response to imposed stresses. The subject plays a central role in the education of students of mechanical engineering, as well as chemical engineers, aeronautical and aerospace engineers, and civil engineers. This textbook includes numerous examples of practical applications of the theoretical ideas presented, such as calculating the thrust of a jet engine, the shock- and expansion-wave patterns for supersonic flow over a diamond-shaped aerofoil, the forces created by liquid flow through a pipe bend and/or junction, and the power output of a gas turbine. The first ten chapters of the book are suitable for first-year undergraduates. The latter half covers material suitable for fluid-mechanics courses for upper-level students Although knowledge of calculus is essential, this text focuses on the underlying physics. The book emphasizes the role of dimensions and dimensional analysis, and includes more material on the flow of non-Newtonian liquids than is usual in a general book on fluid mechanics - a reminder that the majority of synthetic liquids are non-Newtonian in character.
Useful as a reference for engineers in industry and as an advanced
level text for graduate engineering students, Multiphase Flow and
Fluidization takes the reader beyond the theoretical to demonstrate
how multiphase flow equations can be used to provide applied,
practical, predictive solutions to industrial fluidization
problems. Written to help advance progress in the emerging science
of multiphase flow, this book begins with the development of the
conservation laws and moves on through kinetic theory, clarifying
many physical concepts (such as particulate viscosity and solids
pressure) and introducing the new dependent variable--the volume
fraction of the dispersed phase. Exercises at the end of each
chapterare provided for further study and lead into applications
not covered in the text itself.
Progress in the numerical simulation of turbulence has been rapid in the 1990s. New techniques both for the numerical approximation of the Navier-Stokes equations and for the subgrid-scale models used in large-eddy simulation have emerged and are being widely applied for both fundamental and applied engineering studies, along with ideas for the performance and use of simulation for compressible, chemically reacting and transitional flows. This collection of papers from the second ERCOFTAC Workshop on Direct and Large-Eddy Simulation, held in Grenoble in September 1996, presents the research being undertaken in Europe and Japan on these topics. Describing in detail the ambitious use of DNS for fundamental studies and of LES for complex flows of potential and actual engineering importance, this volume should be of interest to researchers active in the area.
This book lays the foundations of gas- and fluid dynamics.The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.
In this book, leading theorists present new contributions and reviews addressing longstanding challenges and ongoing progress in spacetime physics. In the anniversary year of Einstein's General Theory of Relativity, developed 100 years ago, this collection reflects the subsequent and continuing fruitful development of spacetime theories. The volume is published in honour of Carl Brans on the occasion of his 80th birthday. Carl H. Brans, who also contributes personally, is a creative and independent researcher and one of the founders of the scalar-tensor theory, also known as Jordan-Brans-Dicke theory. In the present book, much space is devoted to scalar-tensor theories. Since the beginning of the 1990s, Brans has worked on new models of spacetime, collectively known as exotic smoothness, a field largely established by him. In this Festschrift, one finds an outstanding and unique collection of articles about exotic smoothness. Also featured are Bell's inequality and Mach's principle. Personal memories and historical aspects round off the collection.
This unique thesis covers all aspects of theories of gravity beyond Einstein's General Relativity, from setting up the equations that describe the evolution of perturbations, to determining the best-fitting parameters using constraints like the microwave background radiation, and ultimately to the later stages of structure formation using state-of-the-art N-body simulations and comparing them to observations of galaxies, clusters and other large-scale structures. This truly ground-breaking work puts the study of modified gravity models on the same footing as the standard model of cosmology. Since the discovery of the accelerating expansion of the Universe, marked by the awarding of the 2011 Nobel Prize in Physics, there has been a growing interest in understanding what drives that acceleration. One possible explanation lies in theories of gravity beyond Einstein's General Relativity. This thesis addresses all aspects of the problem, an approach that is crucial to avoiding potentially catastrophic biases in the interpretation of upcoming observational missions.
This book collects research papers on the philosophical foundations of probability, causality, spacetime and quantum theory. The papers are related to talks presented in six subsequent workshops organized by The Budapest-Krakow Research Group on Probability, Causality and Determinism. Coverage consists of three parts. Part I focuses on the notion of probability from a general philosophical and formal epistemological perspective. Part II applies probabilistic considerations to address causal questions in the foundations of quantum mechanics. Part III investigates the question of indeterminism in spacetime theories. It also explores some related questions, such as decidability and observation. The contributing authors are all philosophers of science with a strong background in mathematics or physics. They believe that paying attention to the finer formal details often helps avoiding pitfalls that exacerbate the philosophical problems that are in the center of focus of contemporary research. The papers presented here help make explicit the mathematical-structural assumptions that underlie key philosophical argumentations. This formally rigorous and conceptually precise approach will appeal to researchers and philosophers as well as mathematicians and statisticians.
This book investigates collisions occurring in the motion of solids, in the motion of fluids but also in the motion of pedestrians in crowds. The duration of these presented collisions is short compared to the whole duration of the motion: they are assumed instantaneous. The innovative concept demonstrated in this book is that a system made of two solids, is deformable because their relative position changes. The definition of the velocities of deformation of the system introduced in the classical developments of mechanics, the principle of the virtual work and the laws of thermodynamics, allows a large range of applications such as crowd motions, debris flow motions, and shape memory alloys motions. The set of the applications is even larger: social sciences and mechanics are unified to predict the motion of crowds with application to transport management and to evacuation of theaters management.
This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology, including automotive dynamics, control for electric and hybrid vehicles, and autodriver algorithm for autonomous vehicles. Also included are discussions on renewable energy plants, data modeling, driver-aid methods, and low-frequency vibration. Chapters are based on invited contributions from world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy effective systems. This book is appropriate for researchers, students, and practising engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems. Presents a broad range of practical topics and approaches; Explains approaches to better, safer, and cheaper systems; Emphasises automotive applications, physical meaning, and methodologies.
This book aims to face particles in flows from many different, but essentially interconnected sides and points of view. Thus the selection of authors and topics represented in the chapters, ranges from deep mathematical analysis of the associated models, through the techniques of their numerical solution, towards real applications and physical implications. The scope and structure of the book as well as the selection of authors was motivated by the very successful summer course and workshop "Particles in Flows'' that was held in Prague in the August of 2014. This meeting revealed the need for a book dealing with this specific and challenging multidisciplinary subject, i.e. particles in industrial, environmental and biomedical flows and the combination of fluid mechanics, solid body mechanics with various aspects of specific applications.
This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorny (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapter 3 (existence theory) and to the appendices. It is extremely well organized, and very well written. It is a landmark for researchers in mathematical fluid dynamics, especially those interested in the physical meaning of the equations and statements." Denis Serre (MathSciNet)
The book provides a state-of-art overview of computational methods for nonlinear aeroelasticity and load analysis, focusing on key techniques and fundamental principles for CFD/CSD coupling in temporal domain. CFD/CSD coupling software design and applications of CFD/CSD coupling techniques are discussed in detail as well. It is an essential reference for researchers and students in mechanics and applied mathematics.
This volume offers an overview of the area of waves in fluids and the role they play in the mathematical analysis and numerical simulation of fluid flows. Based on lectures given at the summer school "Waves in Flows", held in Prague from August 27-31, 2018, chapters are written by renowned experts in their respective fields. Featuring an accessible and flexible presentation, readers will be motivated to broaden their perspectives on the interconnectedness of mathematics and physics. A wide range of topics are presented, working from mathematical modelling to environmental, biomedical, and industrial applications. Specific topics covered include: Equatorial wave-current interactions Water-wave problems Gravity wave propagation Flow-acoustic interactions Waves in Flows will appeal to graduate students and researchers in both mathematics and physics. Because of the applications presented, it will also be of interest to engineers working on environmental and industrial issues.
This monograph studies optimization problems for rigid punches in elastic media and for high-speed penetration of rigid strikers into deformed elastoplastic, concrete, and composite media using variational calculations, tools from functional analysis, and stochastic and min-max (guaranteed) optimization approaches with incomplete data. The book presents analytical and numerical results developed by the authors during the last ten years.
This book examines blast waves-their methods of generation, their propagation in several dimensions through the real atmosphere and layered gases, and their interactions with simple structures-thereby providing a broad overview of the field. The intended audience has a basic knowledge of algebra and a good grasp of the concepts of conservation of mass and energy. The text includes an introduction to blast wave terminology and conservation laws, and there is a discussion of units and the importance of consistency. This new edition of Blast Waves has been thoroughly updated and includes two new chapters that cover numerical hydrodynamics and blast injury. Authored by an expert with over forty years of experience in the field of blast and shock, this book offers many lessons as well as a historical perspective on developments in the field.
The purpose of this text is to introduce engineering and science students to the basic underlying physics and chemistry concepts that form the foundation of plasma science and engineering. It is an accessible primer directed primarily at those students who, like the general public, simply do not understand exactly what a plasma or gas discharge is nor do they even necessarily have the fundamental background in statistical thermodynamics, gas dynamics, fluid dynamics, or solid state physics to effectively understand many plasma and gas discharge principles. At the conclusion of this text, the reader should understand what an ion is, how they move, the equations we use to describe these basic concepts, and how they link to the aforementioned topics of plasmas and gas discharges. This book is focused on specific concepts that are important to non-equilibrium, low temperature gas discharges. These discharges fi nd wide applicability today and are of significant interest to the scientifi c and engineering communities.
An almost complete collection of the papers given at the International Workshop on Imaging in High Energy Astronomy (Anacapri, Italy, 1994). These proceedings, which concentrate on imaging above 10 keV, represent the state of the art in the field, resulting from the success of many missions (I.C. Granat and CGRO) carrying detectors for high energy astronomy with imaging capabilities. The main topics of the book are Bragg concentrators, coded mask-modulation collimators, double Compton telescopes, the occultation method, tracking chambers, and new experimental techniques. The book also contains some papers dealing with image reconstruction and processing, with an emphasis on the above techniques.
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB (R) codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This book is a must for students in all fields of engineering, computational physics, scientific computing, and applied mathematics. It can be used in both undergraduate and graduate courses in fluid mechanics, aerodynamics, and computational fluid dynamics. The audience includes not only advanced undergraduate and entry-level graduate students, but also a broad class of scientists and engineers with a general interest in scientific computing.
1. Bursting and Structure of the Turbulence in an Internal Flow Manipulated by Riblets; S. Tardu, T.V. Truong, B. Tanguay. 2. On Near-Wall Turbulence-Generating Events in a Turbulent Boundary Layer on a Riblet Surface; Y.P. Tang, D.G. Clark. 3. Friction Velocity and Virtual Origin Estimates for Mean Velocity Profiles above Smooth and Triangular Riblet Surfaces; A.D. Schwarz-van Manen, A.F.M. van Geloven, J. Nieuwenhuizen, J.C. Stouthart, K.K. Prasad, F.T.M. Nieuwstadt. 4. Viscous Sublayers Analysis of Riblets and Wire Arrays; P. Luchini. 5. Riblet Flow Calculations with a Low Reynolds Number K - epsilon model; L. Djenidi, R.A. Antonia. 6. On the Prediction of Riblet Performance with Engineering Turbulence Models; B.E. Launder, S.P. Li. 7. Modelling the Time Dependent Flow over the Viscous Wall Region; S. Tullis, A. Pollard. 8. Possibility of Drag Reduction using d-Type Roughness; K.S. Choi, N. Fujisawa. 9. The Drag of Three-Dimensional Rectangualr Cavities; E. Savory, N. Toy, P.J. Disimile, R.G. DiMicco. 10. Turbulence Structure of Dilute Polymer and Surfactant Solutions in Artificially Roughened Pipes; H.-W. Bewersdorff, H. Thiel. 11. Effect of External Manipulators on the Heat Transfer on a Flat Plate Turbulent Boundary Layer; A. Hamdouni, J.P. Bonnet.
This prizewinning PhD thesis presents a general discussion of the orbital motion close to solar system small bodies (SSSBs), which induce non-central asymmetric gravitational fields in their neighborhoods. It introduces the methods of qualitative theory in nonlinear dynamics to the study of local/global behaviors around SSSBs. Detailed mechanical models are employed throughout this dissertation, and specific numeric techniques are developed to compensate for the difficulties of directly analyzing. Applying this method, several target systems, like asteroid 216 Kleopatra, are explored in great detail, and the results prove to be both revealing and pervasive for a large group of SSSBs. |
![]() ![]() You may like...
Propeller Programming - Using Assembler…
Sridhar Anandakrishnan
Paperback
Earth Construction - A Comprehensive…
Hugo Houben, Hubert Guillard
Paperback
R966
Discovery Miles 9 660
Futuristic Trends for Sustainable…
Fernando Ortiz-Rodriguez, Sanju Tiwari, …
Hardcover
R7,251
Discovery Miles 72 510
Bifurcations and Instabilities in…
J.F. Labuz, A. Drescher
Hardcover
|