0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (49)
  • R250 - R500 (214)
  • R500+ (8,048)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > Classical mechanics

Nonlinear Approaches in Engineering Applications - Automotive Applications of Engineering Problems (Hardcover, 1st ed. 2020):... Nonlinear Approaches in Engineering Applications - Automotive Applications of Engineering Problems (Hardcover, 1st ed. 2020)
Reza N. Jazar, Liming Dai
R4,319 Discovery Miles 43 190 Ships in 18 - 22 working days

This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology, including automotive dynamics, control for electric and hybrid vehicles, and autodriver algorithm for autonomous vehicles. Also included are discussions on renewable energy plants, data modeling, driver-aid methods, and low-frequency vibration. Chapters are based on invited contributions from world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy effective systems. This book is appropriate for researchers, students, and practising engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems. Presents a broad range of practical topics and approaches; Explains approaches to better, safer, and cheaper systems; Emphasises automotive applications, physical meaning, and methodologies.

Spectral/hp Element Methods for Computational Fluid Dynamics - Second Edition (Hardcover, 2nd Revised edition): George... Spectral/hp Element Methods for Computational Fluid Dynamics - Second Edition (Hardcover, 2nd Revised edition)
George Karniadakis, Spencer Sherwin
R4,799 Discovery Miles 47 990 Ships in 10 - 15 working days

Spectral methods have long been popular in direct and large eddy simulation of turbulent flows, but their use in areas with complex-geometry computational domains has historically been much more limited. More recently the need to find accurate solutions to the viscous flow equations around complex configurations has led to the development of high-order discretization procedures on unstructured meshes, which are also recognized as more efficient for solution of time-dependent oscillatory solutions over long time periods. Here Karniadakis and Sherwin present a much-updated and expanded version of their successful first edition covering the recent and significant progress in multi-domain spectral methods at both the fundamental and application level. Containing over 50% new material, including discontinuous Galerkin methods, non-tensorial nodal spectral element methods in simplex domains, and stabilization and filtering techniques, this text aims to introduce a wider audience to the use of spectral/hp element methods with particular emphasis on their application to unstructured meshes. It provides a detailed explanation of the key concepts underlying the methods along with practical examples of their derivation and application, and is aimed at students, academics and practitioners in computational fluid mechanics, applied and numerical mathematics, computational mechanics, aerospace and mechanical engineering and climate/ocean modelling.

Pneumatic Conveying Design Guide (Paperback, 3rd edition): David Mills Pneumatic Conveying Design Guide (Paperback, 3rd edition)
David Mills
R4,035 Discovery Miles 40 350 Ships in 10 - 15 working days

Pneumatic Conveying Design Guide, 3rd Edition is divided into three essential parts, system and components, system design, and system operation, providing both essential foundational knowledge and practical information to help users understand, design, and build suitable systems. All aspects of the pneumatic conveying system are covered, including the type of materials used, conveying distance, system constraints, including feeding and discharging, health and safety requirements, and the need for continuous or batch conveying. This new edition also covers information on the other conveying systems available and compares them to this method. The existing content is brought up-to-date and the references are expanded and updated. This guide is an almost encyclopedic coverage of pneumatic conveying and as such is an essential text for both designers and users of pneumatic conveying systems. Each aspect of the subject is discussed from basic principles to support those new to, or learning about, this versatile technique.

Dynamical Systems (Hardcover): Jose A. Tenreiro Machado Dynamical Systems (Hardcover)
Jose A. Tenreiro Machado
R2,879 R2,422 Discovery Miles 24 220 Save R457 (16%) Ships in 18 - 22 working days
Fluid Dynamics - Theory, Computation, and Numerical Simulation (Hardcover, 3rd ed. 2017): C. Pozrikidis Fluid Dynamics - Theory, Computation, and Numerical Simulation (Hardcover, 3rd ed. 2017)
C. Pozrikidis
R4,411 Discovery Miles 44 110 Ships in 10 - 15 working days

This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB (R) codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This book is a must for students in all fields of engineering, computational physics, scientific computing, and applied mathematics. It can be used in both undergraduate and graduate courses in fluid mechanics, aerodynamics, and computational fluid dynamics. The audience includes not only advanced undergraduate and entry-level graduate students, but also a broad class of scientists and engineers with a general interest in scientific computing.

Net Energy Analysis and the Energy Requirements of Energy Systems (Hardcover): Daniel T. Spreng Net Energy Analysis and the Energy Requirements of Energy Systems (Hardcover)
Daniel T. Spreng
R2,580 Discovery Miles 25 800 Ships in 18 - 22 working days

With rising energy costs and the threat of diminishing resources affecting all international economies, the computation of energy required to extract and refine a resource--net energy analysis--has become an important component of energy analysis. This volume fills a major gap in the energy development literature by providing a full-length scholarly treatment of the subject. Written for energy researchers and managers in industries and utilities, "Net Energy AnalysiS" thoroughly explains the theoretical principles underlyiing net energy analysis, offers examples of how these principles are applied, and provides an impartial critique of current methods.

List of Edison Records [microform] - Echo All Over the World, Made at the Edison Laboratory (Hardcover): Anonymous List of Edison Records [microform] - Echo All Over the World, Made at the Edison Laboratory (Hardcover)
Anonymous
R732 Discovery Miles 7 320 Ships in 18 - 22 working days
Optimal Structural Design - Contact Problems and High-Speed Penetration (Hardcover): Nikolay V Banichuk, Svetlana Yu Ivanova Optimal Structural Design - Contact Problems and High-Speed Penetration (Hardcover)
Nikolay V Banichuk, Svetlana Yu Ivanova
R3,636 Discovery Miles 36 360 Ships in 10 - 15 working days

This monograph studies optimization problems for rigid punches in elastic media and for high-speed penetration of rigid strikers into deformed elastoplastic, concrete, and composite media using variational calculations, tools from functional analysis, and stochastic and min-max (guaranteed) optimization approaches with incomplete data. The book presents analytical and numerical results developed by the authors during the last ten years.

Vortex Rings and Jets - Recent Developments in Near-Field Dynamics (Hardcover, 2015 ed.): Daniel T H New, Simon C M Yu Vortex Rings and Jets - Recent Developments in Near-Field Dynamics (Hardcover, 2015 ed.)
Daniel T H New, Simon C M Yu
R2,685 Discovery Miles 26 850 Ships in 18 - 22 working days

In this book, recent developments in our understanding of fundamental vortex ring and jet dynamics will be discussed, with a view to shed light upon their near-field behaviour which underpins much of their far-field characteristics. The chapters provide up-to-date research findings by their respective experts and seek to link near-field flow physics of vortex ring and jet flows with end-applications in mind. Over the past decade, our knowledge on vortex ring and jet flows has grown by leaps and bounds, thanks to increasing use of high-fidelity, high-accuracy experimental techniques and numerical simulations. As such, we now have a much better appreciation and understanding on the initiation and near-field developments of vortex ring and jet flows under many varied initial and boundary conditions. Chapter 1 outlines the vortex ring pinch-off phenomenon and how it relates to the initial stages of jet formations and subsequent jet behaviour, while Chapter 2 takes a closer look at the behaviour resulting from vortex ring impingement upon solid boundaries and how the use of a porous surface alters the impingement process. Chapters 3 and 4 focus upon the formation of synthetic jets from vortex ring structures experimentally and numerically, the challenges in understanding the relationships between their generation parameters and how they can be utilized in flow separation control problems. Chapter 5 looks at the use of imposing selected nozzle trailing-edge modifications to effect changes upon the near-field dynamics associated with circular, noncircular and coaxial jets, with a view to control their mixing behaviour. And last but not least, Chapter 6 details the use of unique impinging jet configurations and how they may lend themselves towards greater understanding and operating efficacies in heat transfer problems. This book will be useful to postgraduate students and researchers alike who wish to get up to speed regarding the latest developments in vortex ring and jet flow behaviour and how their interesting flow dynamics may be put into good use in their intended applications.

Low Frequency Scattering (Hardcover): George Dassios, Ralph Kleinman Low Frequency Scattering (Hardcover)
George Dassios, Ralph Kleinman
R7,474 Discovery Miles 74 740 Ships in 10 - 15 working days

Scattering theory deals with the interactions of waves with obstacles in their path, and low frequency scattering occurs when the obstacles involved are very small. This book gives an overview of the subject for graduates and researchers, for the first time unifying the theories covering acoustic, electromagnetic and elastic waves. Included is an extended bibliography covering the whole existing literature on low frequency scattering, making this an invaluable reference for researchers.

Introduction to the Foundations of Applied Mathematics (Hardcover, 2nd ed. 2019): Mark H. Holmes Introduction to the Foundations of Applied Mathematics (Hardcover, 2nd ed. 2019)
Mark H. Holmes
R1,693 R1,248 Discovery Miles 12 480 Save R445 (26%) Ships in 10 - 15 working days

The objective of this textbook is the construction, analysis, and interpretation of mathematical models to help us understand the world we live in. Rather than follow a case study approach it develops the mathematical and physical ideas that are fundamental in understanding contemporary problems in science and engineering. Science evolves, and this means that the problems of current interest continually change. What does not change as quickly is the approach used to derive the relevant mathematical models, and the methods used to analyze the models. Consequently, this book is written in such a way as to establish the mathematical ideas underlying model development independently of a specific application. This does not mean applications are not considered, they are, and connections with experiment are a staple of this book. The book, as well as the individual chapters, is written in such a way that the material becomes more sophisticated as you progress. This provides some flexibility in how the book is used, allowing consideration for the breadth and depth of the material covered. Moreover, there are a wide spectrum of exercises and detailed illustrations that significantly enrich the material. Students and researchers interested in mathematical modelling in mathematics, physics, engineering and the applied sciences will find this text useful. The material, and topics, have been updated to include recent developments in mathematical modeling. The exercises have also been expanded to include these changes, as well as enhance those from the first edition. Review of first edition: "The goal of this book is to introduce the mathematical tools needed for analyzing and deriving mathematical models. ... Holmes is able to integrate the theory with application in a very nice way providing an excellent book on applied mathematics. ... One of the best features of the book is the abundant number of exercises found at the end of each chapter. ... I think this is a great book, and I recommend it for scholarly purposes by students, teachers, and researchers." Joe Latulippe, The Mathematical Association of America, December, 2009

Gravitation, Inertia and Weightlessness - Centrifugal and Gyroscopic Effects of the n-Body System's Interaction Energy... Gravitation, Inertia and Weightlessness - Centrifugal and Gyroscopic Effects of the n-Body System's Interaction Energy (Hardcover, 1st ed. 2016)
V.I. Ferronsky
R3,945 R3,415 Discovery Miles 34 150 Save R530 (13%) Ships in 10 - 15 working days

This work discusses the problem of physical meaning of the three main dynamical properties of matter motion, namely gravitation, inertia and weightlessness. It considers that Newtonian gravitation and Galileo's inertia are the centrifugal effects of interaction energy of a self-gravitating n-body system and its potential field. A self-gravitating celestial body appears to be an excellent natural centrifuge that is rotated by the energy of interacting elementary particles. Weightlessness is a consequence of the centrifugal effect of elementary particles interaction that appears at differentiation of a body matter with respect to density. The author analyzes the problem of creation of mass particles and elements from the elementary particles of "dark matter", and discusses the basic physics of the Jacobi dynamics from the viewpoint of quantum gravitation. Chapters assert that the fundamentals of Jacobi dynamics completely correspond to conditions of natural centrifuges. The centrifuge is an excellent experimental model for the study of dynamical effects in solving the many body problem. In this book, readers may follow the demonstration of some of those studies and follow derivations, solutions and conclusions that provide a solid basis for further research in celestial mechanics, geophysics, astrophysics, geo- and planetary sciences.

Time-Symmetry Breaking in Turbulent Multi-Particle Dispersion (Hardcover, 1st ed. 2015): Jennifer Jucha Time-Symmetry Breaking in Turbulent Multi-Particle Dispersion (Hardcover, 1st ed. 2015)
Jennifer Jucha
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

This thesis presents experimental and theoretical investigations of the connection between the time asymmetry in the short-time evolution of particle clusters and the intrinsic irreversibility of turbulent flows due to the energy cascade. The term turbulence describes a special state of a continuous medium in which many interacting degrees of freedom are excited. One of the interesting phenomena observed in turbulent flows is their time irreversibility. When milk is stirred into coffee, for example, highly complex and interwoven structures are produced, making the mixing process irreversible. This behavior can be analyzed in more detail by studying the dispersion of particle clusters. Previous experimental and numerical studies on the time asymmetry in two-particle dispersion indicate that particles separate faster backwards than forwards in time, but no conclusive explanation has yet been provided. In this thesis, an experimental study on the short-time behavior of two- and four-particle dispersion in a turbulent water flow between two counter-rotating propellers is presented. A brief but rigorous theoretical analysis reveals that the observed time irreversibility is closely linked to the turbulence energy cascade. Additionally, it is demonstrated experimentally that the addition of minute amounts of polymers to the flow has a significant impact on multi-particle dispersion due to an alteration of the energy cascade.

Energy Management Principles - Applications, Benefits, Savings (Paperback, 2nd edition): Craig B Smith, Kelly E Parmenter Energy Management Principles - Applications, Benefits, Savings (Paperback, 2nd edition)
Craig B Smith, Kelly E Parmenter
R1,752 Discovery Miles 17 520 Ships in 10 - 15 working days

Energy Management Principles: Applications, Benefits, Savings, Second Edition is a comprehensive guide to the fundamental principles and systematic processes of maintaining and improving energy efficiency and reducing waste. Fully revised and updated with analysis of world energy utilization, incentives and utility rates, and new content highlighting how energy efficiency can be achieved through 1 of 16 outlined principles and programs, the book presents cost effective analysis, case studies, global examples, and guidance on building and site auditing. This fully revised edition provides a theoretical basis for conservation, as well as the avenues for its application, and by doing so, outlines the potential for cost reductions through an analysis of inefficiencies.

Discrete Causal Theory - Emergent Spacetime and the Causal Metric Hypothesis (Hardcover, 1st ed. 2017): Benjamin F. Dribus Discrete Causal Theory - Emergent Spacetime and the Causal Metric Hypothesis (Hardcover, 1st ed. 2017)
Benjamin F. Dribus
R5,647 Discovery Miles 56 470 Ships in 10 - 15 working days

This book evaluates and suggests potentially critical improvements to causal set theory, one of the best-motivated approaches to the outstanding problems of fundamental physics. Spacetime structure is of central importance to physics beyond general relativity and the standard model. The causal metric hypothesis treats causal relations as the basis of this structure. The book develops the consequences of this hypothesis under the assumption of a fundamental scale, with smooth spacetime geometry viewed as emergent. This approach resembles causal set theory, but differs in important ways; for example, the relative viewpoint, emphasizing relations between pairs of events, and relationships between pairs of histories, is central. The book culminates in a dynamical law for quantum spacetime, derived via generalized path summation.

Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Hardcover): Andrea Montessori, Giacomo Falcucci Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Hardcover)
Andrea Montessori, Giacomo Falcucci
R1,700 Discovery Miles 17 000 Ships in 18 - 22 working days

Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.

The Theory of Composites (Paperback): Graeme W. Milton The Theory of Composites (Paperback)
Graeme W. Milton
R2,711 R2,449 Discovery Miles 24 490 Save R262 (10%) Ships in 10 - 15 working days

Composites have been studied for more than 150 years, and interest in their properties has been growing. This classic volume provides the foundations for understanding a broad range of composite properties, including electrical, magnetic, electromagnetic, elastic and viscoelastic, piezoelectric, thermal, fluid flow through porous materials, thermoelectric, pyroelectric, magnetoelectric, and conduction in the presence of a magnetic field (Hall effect). Exact solutions of the PDEs in model geometries provide one avenue of understanding composites; other avenues include microstructure-independent exact relations satisfied by effective moduli, for which the general theory is reviewed; approximation formulae for effective moduli; and series expansions for the fields and effective moduli that are the basis of numerical methods for computing these fields and moduli. The range of properties that composites can exhibit can be explored either through the model geometries or through microstructure-independent bounds on the properties. These bounds are obtained through variational principles, analytic methods, and Hilbert space approaches. Most interesting is when the properties of the composite are unlike those of the constituent materials, and there has been an explosion of interest in such composites, now known as metamaterials. The Theory of Composites surveys these aspects, among others, and complements the new body of literature that has emerged since the book was written. It remains relevant today by providing historical background, a compendium of numerous results, and through elucidating many of the tools still used today in the analysis of composite properties. This book is intended for applied mathematicians, physicists, and electrical and mechanical engineers. It will also be of interest to graduate students.

Multiphase Flow Dynamics 1 - Fundamentals (Hardcover, 5th ed. 2015): Nikolay Ivanov Kolev Multiphase Flow Dynamics 1 - Fundamentals (Hardcover, 5th ed. 2015)
Nikolay Ivanov Kolev
R5,404 Discovery Miles 54 040 Ships in 18 - 22 working days

In its fifth extended edition the successful monograph package "Multiphase Flow Dynamics" contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fifth edition includes various updates, extensions, improvements and corrections, as well as a completely new chapter containing the basic physics describing the multi-phase flow in turbines, compressors, pumps and other rotating hydraulic machines.

Study of Quark Gluon Plasma By Particle Correlations in Heavy Ion Collisions (Hardcover, 1st ed. 2016): Li Yi Study of Quark Gluon Plasma By Particle Correlations in Heavy Ion Collisions (Hardcover, 1st ed. 2016)
Li Yi
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

This thesis covers several important topics relevant to our understanding of quark-gluon plasma. It describes measurement of the third-order harmonic flow using two-particle correlations and isolation of flow and non-flow contributions to particle correlations in gold-gold collisions. The work also investigates long-range longitudinal correlations in small systems of deuteron-gold collisions. The former is related to the hydrodynamic transport properties of the quark-gluon plasma created in gold-gold collisions. The latter pertains to the question whether hydrodynamics is applicable to small systems, such as deuteron-gold collisions, and whether the quark-gluon plasma can be formed in those small-system collisions. The work presented in this thesis was conducted with the STAR experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, where the center-of-mass energy of both collision systems was a factor of 100 larger than the rest mass of the colliding nuclei. The results contained in this thesis are highly relevant to our quest for deeper understanding of quantum chromodynamics. The results obtained challenge the interpretation of previous works from several other experiments on small systems, and provoke a fresh look at the physics of hydrodynamics and particle correlations pertinent to high energy nuclear collisions.

Elementary Mechanics Using Python - A Modern Course Combining Analytical and Numerical Techniques (Hardcover, 2015 ed.): Anders... Elementary Mechanics Using Python - A Modern Course Combining Analytical and Numerical Techniques (Hardcover, 2015 ed.)
Anders Malthe-Sorenssen
R1,608 Discovery Miles 16 080 Ships in 10 - 15 working days

This book - specifically developed as a novel textbook on elementary classical mechanics - shows how analytical and numerical methods can be seamlessly integrated to solve physics problems. This approach allows students to solve more advanced and applied problems at an earlier stage and equips them to deal with real-world examples well beyond the typical special cases treated in standard textbooks. Another advantage of this approach is that students are brought closer to the way physics is actually discovered and applied, as they are introduced right from the start to a more exploratory way of understanding phenomena and of developing their physical concepts. While not a requirement, it is advantageous for the reader to have some prior knowledge of scientific programming with a scripting-type language. This edition of the book uses Python, and a chapter devoted to the basics of scientific programming with Python is included. A parallel edition using Matlab instead of Python is also available. Last but not least, each chapter is accompanied by an extensive set of course-tested exercises and solutions.

Statistics in Hydrology (Hardcover): Yuanfang Chen, Dong Wang, Dedi Liu Statistics in Hydrology (Hardcover)
Yuanfang Chen, Dong Wang, Dedi Liu
R1,704 R1,468 Discovery Miles 14 680 Save R236 (14%) Ships in 18 - 22 working days
Bubble Systems (Hardcover, 1st ed. 2016): Alexander A. Avdeev Bubble Systems (Hardcover, 1st ed. 2016)
Alexander A. Avdeev
R4,675 R3,604 Discovery Miles 36 040 Save R1,071 (23%) Ships in 10 - 15 working days

This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boiling shock with applications to problems of critical discharge and flashing under the fast decompression conditions. Reynolds' analogy was the key to solving a number of problems in subcooled forced-flow boiling, the theoretical results of which led to easy-to-use design formulas. This book is primarily aimed at graduate and post-graduate students specializing in hydrodynamics or heat and mass transfer, as well as research expert focused on two-phase flow. It will also serve as a comprehensive reference book for designers working in the field of power and aerospace technology.

Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid (Hardcover, 1st ed. 2017): Lin Chen Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid (Hardcover, 1st ed. 2017)
Lin Chen
R3,273 Discovery Miles 32 730 Ships in 10 - 15 working days

This book discusses basic thermodynamic behaviors and 'abnormal' properties from a thermo-physical perspective, and explores basic heat transfer and flow properties, the latest findings on their physical aspects and indications, chemical engineering properties, microscale phenomena, as well as transient behaviors in fast and critical environments. It also presents the most and challenging problems and the outlook for applications and innovations of supercritical fluids.

Parallel Computational Fluid Dynamics 2001, Practice and Theory (Hardcover, 1st ed): P. Wilders, P. Fox, A. Ecer, N. Satofuka,... Parallel Computational Fluid Dynamics 2001, Practice and Theory (Hardcover, 1st ed)
P. Wilders, P. Fox, A. Ecer, N. Satofuka, Jacques Periaux
R4,137 Discovery Miles 41 370 Ships in 10 - 15 working days

ParCFD 2001, the thirteenth international conference on Parallel Computational Fluid Dynamics took place in Egmond aan Zee, the Netherlands, from May 21-23, 2001. The specialized, high-level ParCFD conferences are organized yearly on traveling locations all over the world. A strong back-up is given by the central organization located in the USA http: //www.parcfd.org.


These proceedings of ParCFD 2001 represent 70% of the oral lectures presented at the meeting. All published papers were subjected to a refereeing process, which resulted in a uniformly high quality.


The papers cover not only the traditional areas of the ParCFD conferences, e.g. numerical schemes and algorithms, tools and environments, interdisciplinary topics, industrial applications, but, following local interests, also environmental and medical issues. These proceedings present an up-to-date overview of the state of the art in parallel computational fluid dynamics.

Geometric Continuum Mechanics and Induced Beam Theories (Hardcover, 2015 ed.): Simon R. Eugster Geometric Continuum Mechanics and Induced Beam Theories (Hardcover, 2015 ed.)
Simon R. Eugster
R3,225 Discovery Miles 32 250 Ships in 18 - 22 working days

This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Fluid Mechanics and the SPH Method…
Damien Violeau Hardcover R3,733 Discovery Miles 37 330
Rays, Waves and Photons
William L. Wolfe Paperback R768 Discovery Miles 7 680
The Oxford Handbook of Sound Studies
Trevor Pinch, Karin Bijsterveld Hardcover R5,427 Discovery Miles 54 270
Classical Mechanics
Mario Campanelli Paperback R775 Discovery Miles 7 750
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, … Hardcover R2,505 Discovery Miles 25 050
The Acoustic Bubble
T.G. Leighton Paperback R2,118 Discovery Miles 21 180
Fourier Acoustics - Sound Radiation and…
Earl G. Williams Hardcover R2,769 Discovery Miles 27 690
Electrodynamics - Problems and Solutions
Carolina C Ilie, Zachariah S. Schrecengost Paperback R754 Discovery Miles 7 540
Foundations of Engineering Acoustics
Frank J. Fahy Hardcover R2,780 Discovery Miles 27 800
Advances in Crystals and Elastic…
Mahmoud Hussein Hardcover R4,644 Discovery Miles 46 440

 

Partners