![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics
The principle aim of the book is to present a self-contained, modern account of similarity and symmetry methods, which are important mathematical tools for both physicists, engineers and applied mathematicians. The idea is to provide a balanced presentation of the mathematical techniques and applications of symmetry methods in mathematics, physics and engineering. That is why it includes recent developments and many examples in finding systematically conservation laws, local and nonlocal symmetries for ordinary and partial differential equations. The role of continuous symmetries in classical and quantum field theories is exposed at a technical level accessible even for non specialists. The importance of symmetries in continuum mechanics and mechanics of materials is highlighted through recent developments, such as the construction of constitutive models for various materials combining Lie symmetries with experimental data. As a whole this book is a unique collection of contributions from experts in the field, including specialists in the mathematical treatment of symmetries, researchers using symmetries from a fundamental, applied or numerical viewpoint. The book is a fascinating overview of symmetry methods aimed for graduate students in physics, mathematics and engineering, as well as researchers either willing to enter in the field or to capture recent developments and applications of symmetry methods in different scientific fields.
Energy storage devices are a crucial area of research and development across many engineering disciplines and industries. While batteries provide the significant advantage of high energy density, their limited life cycles, disposal challenges and charge and discharge management constraints undercut their effectiveness in certain applications. Compared to electrochemical cells, supercapacitors are charge-storage devices with much longer life cycles, yet they have traditionally been hobbled by limited DC voltage capabilities and energy density. However, recent advances are improving these issues. This book provides the opportunity to expand your knowledge of
innovative supercapacitor applications, comparing them to other
commonly used energy storage devices. It will strengthen your
understanding of energy storage from a practical,
applications-based point-of-view, without requiring detailed
examination of underlying electrochemical equations. No matter what
your field, you will find inspiration and guidance in the
cutting-edge advances in energy storage devices in this book.
Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.
Some extremum and unilateral boundary value problems in viscous hydrodynamics.- On axisymmetric motion of the fluid with a free surface.- On the occurrence of singularities in axisymmetrical problems of hele-shaw type.- New asymptotic method for solving of mixed boundary value problems.- Some results on the thermistor problem.- New applications of energy methods to parabolic and elliptic free boundary problems.- A localized finite element method for nonlinear water wave problems.- Approximate method of investigation of normal oscillations of viscous incompressible liquid in container.- The classical Stefan problem as the limit case of the Stefan problem with a kinetic condition at the free boundary.- A mathematical model of oscillations energy dissipation of viscous liquid in a tank.- Existence of the classical solution of a two-phase multidimensional Stefan problem on any finite time interval.- Asymptotic theory of propagation of nonstationary surface and internal waves over uneven bottom.- Multiparametric problems of two-dimensional free boundary seepage.- Nonisothermal two-phase filtration in porous media.- Explicit solution of time-dependent free boundary problems.- Nonequilibrium phase transitions in frozen grounds.- System of variational inequalities arising in nonlinear diffusion with phase change.- Contact viscoelastoplastic problem for a beam.- Application of a finite-element method to two-dimensional contact problems.- Computations of a gas bubble motion in liquid.- Waves on the liquid-gas free surface in the presence of the acoustic field in gas.- Smooth bore in a two-layer fluid.- Numerical calculation of movable free and contact boundaries in problems of dynamic deformation of viscoelastic bodies.- On the canonical variables for two-dimensional vortex hydrodynamics of incompressible fluid.- About the method with regularization for solving the contact problem in elasticity.- Space evolution of tornado-like vortex core.- Optimal shape design for parabolic system and two-phase Stefan problem.- Incompressible fluid flows with free boundary and the methods for their research.- On the Stefan problems for the system of equations arising in the modelling of liquid-phase epitaxy processes.- Stefan problem with surface tension as a limit of the phase field model.- The modelization of transformation phase via the resolution of an inclusion problem with moving boundary.- To the problem of constructing weak solutions in dynamic elastoplasticity.- The justification of the conjugate conditions for the Euler's and Darcy's equations.- On an evolution problem of thermo-capillary convection.- Front tracking methods for one-dimensional moving boundary problems.- On Cauchy problem for long wave equations.- On fixed point (trial) methods for free boundary problems.- Nonlinear theory of dynamics of a viscous fluid with a free boundary in the process of a solid body wetting.
Wall bounded turbulent flows are of major importance in industrial and environmental fluid mechanics. The structure of the wall turbulence is intrinsically related to the coherent structures that play a fundamental role in the transport process. The comprehension of their regeneration mechanism is indispensable for the development of efficient strategies in terms of drag control and near wall turbulence management. This book provides an up-to-date overview on the progress made in this specific area in recent years.
This new edition includes brand-new developments in the modeling of processes in the column apparatuses. It analyzes the radial velocity component and axial variation in the axial velocity in the column. These models are described in five new chapters. The book presents models of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze a broad range of processes (simple and complex chemical reactions, physical and chemical absorption, physical and chemical adsorption, catalytic reactions in the cases of physical and chemical adsorption mechanism), and make it possible to model sulfur dioxide gas purification processes.
Wave evolution on a falling film is a classical hydrodynamic instability whose rich wave dynamics have been carefully recorded in the last fifty years. Such waves are known to profoundly affect the mass and heat transfer of multi-phase industrial units.
This book gives you the tools you need to understand and determine changing propagation characteristics found in different physical situations and locations. The book presents a practical digital propagation model based entirely on the physical principles of wave propagation.
Many diverse materials, from man-made plastics to slurry, behave in ways that cannot be predicted using straightforward 'classical' equations. This book provides a guide, with examples, for those who wish to make predictions about the mechanical and thermal behaviour of non-Newtonian materials in engineering and processing technology. There is an emphasis on the practical solution of problems using computer methods, and on the correlation between theory and experimental work.
Authored by the internationally renowned Jose M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%.
This book highlights the symmetry properties of acoustic fields and describes the gauge invariance approach, which can be used to reveal those properties. Symmetry is the key theoretical framework of metamaterials, as has been demonstrated by the successful fabrication of acoustical metamaterials. The book first provides the necessary theoretical background, which includes the covariant derivative, the vector potential, and invariance in coordinate transformation. This is followed by descriptions of global gauge invariance (isotropy), and of local gauge invariance (anisotropy). Sections on time reversal symmetry, reflection invariance, and invariance of finite amplitude waves round out the coverage.
This book discusses the thermal-elastic mechanics problems of concrete rectangular thin plate. Using theoretical derivation combined with numerical examples, it explains in detail the analytical solution of the deflection, bending moment, thermal vibration and thermal buckling of concrete rectangular thin plate. To facilitate application, the book also includes deflection and bending moment calculation tables of concrete rectangular thin plate with four edges supported and with free boundary conditions.
This thesis studies the effects of superplasticizers, polyacrylate latexes and asphalt emulsions, which differ in molecular/particle size from nanometers to microns, on the rheological properties of fresh cement pastes (FCPs), as well as the action mechanisms involved. It systematically investigates the rheological properties and microstructure of cement-based materials, and elucidates the adsorption behaviors of polycarboxylate polymers with different functional groups and their effects on cement hydration. Moreover, it reveals how the working mechanism of naphthalene sulfonate formaldehyde (NSF) differs from that of polycarboxylate ether-based (PCE) superplasticizers. Lastly, it develops a conceptual microstructure model and two rheological equations. These findings lend theoretical support to the development of new chemical admixtures and new, higher-performance, cement-based composites.
This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Loewner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive bibliography covering over twelve decades of results and an introduction rich in historical and biographical details complement the eight main chapters of this monograph. Given its systematic and consistent notation and background results, this book provides a self-contained resource. It is accessible to a wide readership, from beginner graduate students to researchers from various fields in natural sciences and mathematics.
This book presents an introduction to the classical theories of continuum mechanics; in particular, to the theories of ideal, compressible, and viscous fluids, and to the linear and nonlinear theories of elasticity. These theories are important, not only because they are applicable to a majority of the problems in continuum mechanics arising in practice, but because they form a solid base upon which one can readily construct more complex theories of material behavior. Further, although attention is limited to the classical theories, the treatment is modern with a major emphasis on foundations and structure
"Handbook of Energy, Volume II: Chronologies, Top Ten Lists, and Word Clouds" draws together a comprehensive account of the energy field from the prestigious and award-winning authors of the "Encyclopedia of Energy" (2004), "The Dictionary of Energy, Expanded Edition" (2009), and the "Handbook of Energy, Volume I" (2013). "Handbook of Energy, Volume II" takes the wealth of information
about historical aspects of energy spread across many books,
journals, websites, disciplines, ideologies, and user communities
and synthesizes the information in one central repository. This
book meets the needs of a diverse readership working in energy, and
serves as a vital method of communication among communities
including colleges and universities, nongovernmental organizations,
government agencies, consulting firms and research institutes of
energy, environmental, and public policy issues.
This book presents a wealth of images of shock wave phenomena, gathered by the author over the past 40 years. Shadowgrams and interferograms of basic shock-dynamic topics such as reflection, diffraction, refraction, and focusing of shock waves in gases and liquids are sequentially displayed. Though the images themselves are self-explanatory, brief explanations of the experimental conditions are included, so as to facilitate analysis and numerical reproduction of the image data. In addition, the book presents interferometric observations of underwater shock wave/bubble interactions, and highlights the multifaceted applications of shock wave phenomena to medicine and industry. Given its scope, the book offers a unique resource for students and researchers who are interested in shock wave phenomena. However, the content has also been specifically prepared for the benefit of readers who are interested in gas dynamics and medical applications of shock waves, and are looking for reliable experimental images.
This is a guide to the design and application of elliptical dielectric waveguides and fibers. Written by one of the pioneers of optical fiber technology, it shows the theoretical basis of the technology, demonstrates the practical uses for elliptical fibers, guides the reader through design criteria and trade-offs, and gives immediate access to collected data and references on the topic. "Elliptical Fiber Waveguides" begins with an historical overview, and then provides detailed coverage of specific waveguide and fiber modes, including all relevant specifications and data currently available. The book examines the use of elliptical fibers for a wide variety of recent applications, including sensors, rare-earth-doped fiber sources, and amplifiers. With its 278 equations, 161 figures, and nearly 200 references to the literature, "Elliptical Fiber Waveguides" brings together in one source the complete body of information currently available on this promising technology.
This volume of the Handbook of Surface Science covers all aspects
of the dynamics of surface processes. Two dozen world leading
experts in this field address the subjects of energy exchange in
gas atoms, surface collisions, the rules governing dissociative
adsorption on surfaces, the formation of nanostructures on surfaces
by self-assembly, and the study of surface phenomena using
ultra-fast lasers. The chapters are written for both newcomers to
the field as well as researchers.
Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications. New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises. Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science. Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, engineering, and other physical sciences. Reviews of the first edition: "This book ... is an introduction to the theory of linear and nonlinear waves in fluids, including the theory of shock waves. ... is extraordinarily accurate and free of misprints ... . I enjoyed reading this book. ... most attractive and enticing appearance, and I'm certain that many readers who browse through it will wish to buy a copy. The exercises ... are excellent. ... A beginner who worked through these exercises would not only enjoy himself or herself, but would rapidly acquire mastery of techniques used...in JFM and many other journals..." (C. J. Chapman, Journal of Fluid Mechanics, Vol. 521, 2004) "The book targets a readership of final year undergraduates and first year graduates in applied mathematics. In the reviewer's opinion, it is very well designed to catch the student's interest ... while every chapter displays essential features in some important area of fluid dynamics. Additionally, students may practice by solving 91 exercises. This volume is mainly devoted to inviscid flows. ... The book is very well written." (Denis Serre, Mathematical Reviews, 2004)
The work in this thesis was a part of the experiment of squeezed light injection into the LIGO interferometer. The work first discusses the detailed design of the squeezed light source which would be used for the experiment. The specific design is the doubly-resonant, traveling-wave bow-tie cavity squeezed light source with a new modified coherent sideband locking technique. The thesis describes the properties affecting the squeezing magnitudes and offers solutions which improve the gain. The first part also includes the detailed modeling of the back-scattering noise of a traveling Optical Parametric Oscillator (OPO). In the second part, the thesis discusses the LIGO Squeezed Light Injection Experiment, undertaken to test squeezed light injection into a 4km interferometric gravitational wave detector. The results show the first ever measurement of squeezing enhancement in a full-scale suspended gravitational wave interferometer with Fabry-Perot arms. Further, it showed that the presence of a squeezed-light source added no additional noise in the low frequency band. The result was the best sensitivity achieved by any gravitational wave detector. The thesis is very well organized with the adequate theoretical background including basics of Quantum Optics, Quantum noise pertaining to gravitational wave detectors in various configurations, along with extensive referencing necessary for the experimental set-up. For any non-experimental scientist, this introduction is a very useful and enjoyable reading. The author is the winner of the 2013 GWIC Theses Prize. |
You may like...
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
The Oxford Handbook of Sound Studies
Trevor Pinch, Karin Bijsterveld
Hardcover
R5,427
Discovery Miles 54 270
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R4,086
Discovery Miles 40 860
|