|
|
Books > Science & Mathematics > Physics > Classical mechanics
With the fast pace of developments in quantum technologies, it is
more than ever necessary to make the new generation of students in
science and engineering familiar with the key ideas behind such
disruptive systems. This book intends to fill such a gap between
experts and non-experts in the field by providing the reader with
the basic tools needed to understand the latest developments in
quantum communications and its future directions. This is not only
to expand the audience knowledge but also to attract new talents to
this flourishing field. To that end, the book as a whole does not
delve into much detail and most often suffices to provide some
insight into the problem in hand. The primary users of the book
will then be students in science and engineering in their final
year of undergraduate studies or early years of their post-graduate
programmes.
Who Needs Nuclear Power challenges conventional thinking about the
role of civil nuclear power in a rapidly changing energy context,
where new energy carriers are penetrating markets around the world.
Against the backdrop of a global energy transition and the defining
issue of Climate Change, Chris Anastasi assesses new nuclear build
in a fast-moving sector in which new technologies and practices are
rapidly emerging. He considers various countries at different
stages of nuclear industry development, and discusses their
political, legal and technical institutions that provide the
framework for both existing nuclear facilities and new build, as
well as a country's technical capability. He also highlights the
critical issue of nuclear safety culture, exploring how
organisations go about instilling it and maintaining it in their
operations and encouraging it in their supply chains; the critical
role played by independent regulators and international
institutions in ensuring the integrity of the industry is also
highlighted. This book provides a balanced and holistic view of
nuclear power for both an expert and non-expert audience, and a
realistic assessment of the potential for this technology over the
critical period to 2050 and beyond.
This book reviews basic electromagnetic (EM) wave theory and
applies it specifically to lasers in order to give the reader not
only tangible examples of how the theory is manifested in real
life, but also practical knowledge about lasers, and their
operation and usage. The latter can be useful for those involved
with using lasers. As a short treatise on this subject matter, this
book is not intended to dwell deeply into the details of EM waves
nor lasers. A bibliography is provided for those who wish to
explore in more depth the topics covered in this book. Rather the
aim of this book is to offer a quick overview, which will allow the
reader to gain a competent general understanding of EM waves and
lasers.
Fluid mechanics is the study of how fluids behave and interact
under various forces and in various applied situations, whether in
liquid or gas state or both. The author compiles pertinent
information that are introduced in the more advanced classes at the
senior level and at the graduate level. "Advanced Fluid Mechanics"
courses typically cover a variety of topics involving fluids in
various multiple states (phases), with both elastic and non-elastic
qualities, and flowing in complex ways. This new text will
integrate both the simple stages of fluid mechanics
("Fundamentals") with those involving more complex parameters,
including Inviscid Flow in multi-dimensions, Viscous Flow and
Turbulence, and a succinct introduction to Computational Fluid
Dynamics. It will offer exceptional pedagogy, for both classroom
use and self-instruction, including many worked-out examples,
end-of-chapter problems, and actual computer programs that can be
used to reinforce theory with real-world applications.
Professional engineers as well as Physicists and Chemists working
in the analysis of fluid behavior in complex systems will find the
contents of this book useful.All manufacturing companies involved
in any sort of systems that encompass fluids and fluid flow
analysis (e.g., heat exchangers, air conditioning and
refrigeration, chemical processes, etc.) or energy generation
(steam boilers, turbines and internal combustion engines, jet
propulsion systems, etc.), or fluid systems and fluid power (e.g.,
hydraulics, piping systems, and so on)will reap the benefits of
this text.
- Offers detailed derivation of fundamental equations for better
comprehension of more advanced mathematical analysis
-Provides groundwork for more advanced topics on boundary layer
analysis, unsteady flow, turbulent modeling, and computational
fluid dynamics
- Includes worked-out examples and end-of-chapter problems as well
as a companion web site with sample computational programs and
Solutions Manual
Integrable models have a fascinating history with many important
discoveries that dates back to the famous Kepler problem of
planetary motion. Nowadays it is well recognised that integrable
systems play a ubiquitous role in many research areas ranging from
quantum field theory, string theory, solvable models of statistical
mechanics, black hole physics, quantum chaos and the AdS/CFT
correspondence, to pure mathematics, such as representation theory,
harmonic analysis, random matrix theory and complex geometry.
Starting with the Liouville theorem and finite-dimensional
integrable models, this book covers the basic concepts of
integrability including elements of the modern geometric approach
based on Poisson reduction, classical and quantum factorised
scattering and various incarnations of the Bethe Ansatz.
Applications of integrability methods are illustrated in vast
detail on the concrete examples of the Calogero-Moser-Sutherland
and Ruijsenaars-Schneider models, the Heisenberg spin chain and the
one-dimensional Bose gas interacting via a delta-function
potential. This book has intermediate and advanced topics with
details to make them clearly comprehensible.
This book is a sequel to Lectures on Selected Topics in
Mathematical Physics: Introduction to Lie Theory with Applications.
This volume is devoted mostly to Lie groups. Lie algebras and
generating functions, both for standard special functions and for
solution of certain types of physical problems. It is an informal
treatment of these topics intended for physics graduate students or
others with a physics background wanting a brief and informal
introduction to the subjects addressed in a style and vocabulary
not completely unfamiliar.
This introductory text emphasises physical principles, rather than
the mathematics. Each topic begins with a discussion of the
physical characteristics of the motion or system. The mathematics
is kept as clear as possible, and includes elegant mathematical
descriptions where possible. Designed to provide a logical
development of the subject, the book is divided into two sections,
vibrations followed by waves. A particular feature is the inclusion
of many examples, frequently drawn from everyday life, along with
more cutting-edge ones. Each chapter includes problems ranging in
difficulty from simple to challenging and includes hints for
solving problems. Numerous worked examples included throughout the
book.
New edition of the popular textbook, comprehensively updated
throughout and now includes a new dedicated website for gas dynamic
calculations The thoroughly revised and updated third edition of
Fundamentals of Gas Dynamics maintains the focus on gas flows below
hypersonic. This targeted approach provides a cohesive and rigorous
examination of most practical engineering problems in this gas
dynamics flow regime. The conventional one-dimensional flow
approach together with the role of temperature-entropy diagrams are
highlighted throughout. The authors--noted experts in the
field--include a modern computational aid, illustrative charts and
tables, and myriad examples of varying degrees of difficulty to aid
in the understanding of the material presented. The updated edition
of Fundamentals of Gas Dynamics includes new sections on the shock
tube, the aerospike nozzle, and the gas dynamic laser. The book
contains all equations, tables, and charts necessary to work the
problems and exercises in each chapter. This book's accessible but
rigorous style: Offers a comprehensively updated edition that
includes new problems and examples Covers fundamentals of gas flows
targeting those below hypersonic Presents the one-dimensional flow
approach and highlights the role of temperature-entropy diagrams
Contains new sections that examine the shock tube, the aerospike
nozzle, the gas dynamic laser, and an expanded coverage of rocket
propulsion Explores applications of gas dynamics to aircraft and
rocket engines Includes behavioral objectives, summaries, and check
tests to aid with learning Written for students in mechanical and
aerospace engineering and professionals and researchers in the
field, the third edition of Fundamentals of Gas Dynamics has been
updated to include recent developments in the field and retains all
its learning aids. The calculator for gas dynamics calculations is
available at https: //www.oscarbiblarz.com/gascalculator gas
dynamics calculations
This volume collects the edited and reviewed contributions
presented in the 8th iTi Conference on Turbulence, held in
Bertinoro, Italy, in September 2018. In keeping with the spirit of
the conference, the book was produced afterwards, so that the
authors had the opportunity to incorporate comments and discussions
raised during the event. The respective contributions, which
address both fundamental and applied aspects of turbulence, have
been structured according to the following main topics: I TheoryII
Wall-bounded flowsIII Simulations and modellingIV ExperimentsV
Miscellaneous topicsVI Wind energy
The Boussinesq equation is the first model of surface waves in
shallow water that considers the nonlinearity and the dispersion
and their interaction as a reason for wave stability known as the
Boussinesq paradigm. This balance bears solitary waves that behave
like quasi-particles. At present, there are some Boussinesq-like
equations. The prevalent part of the known analytical and numerical
solutions, however, relates to the 1d case while for
multidimensional cases, almost nothing is known so far. An
exclusion is the solutions of the Kadomtsev-Petviashvili equation.
The difficulties originate from the lack of known analytic initial
conditions and the nonintegrability in the multidimensional case.
Another problem is which kind of nonlinearity will keep the
temporal stability of localized solutions. The system of coupled
nonlinear Schroedinger equations known as well as the vector
Schroedinger equation is a soliton supporting dynamical system. It
is considered as a model of light propagation in Kerr isotropic
media. Along with that, the phenomenology of the equation opens a
prospect of investigating the quasi-particle behavior of the
interacting solitons. The initial polarization of the vector
Schroedinger equation and its evolution evolves from the vector
nature of the model. The existence of exact (analytical) solutions
usually is rendered to simpler models, while for the vector
Schroedinger equation such solutions are not known. This determines
the role of the numerical schemes and approaches. The vector
Schroedinger equation is a spring-board for combining the reduced
integrability and conservation laws in a discrete level. The
experimental observation and measurement of ultrashort pulses in
waveguides is a hard job and this is the reason and stimulus to
create mathematical models for computer simulations, as well as
reliable algorithms for treating the governing equations. Along
with the nonintegrability, one more problem appears here - the
multidimensionality and necessity to split and linearize the
operators in the appropriate way.
This is the proceedings of the 2nd International Conference on
Theoretical, Applied and Experimental Mechanics that was held in
Corfu, Greece, June 23-26, 2019. It presents papers focusing on all
aspects of theoretical, applied and experimental mechanics,
including biomechanics, composite materials, computational
mechanics, constitutive modeling of materials, dynamics,
elasticity, experimental mechanics, fracture, mechanical properties
of materials, micromechanics, nanomechanics, plasticity, stress
analysis, structures, wave propagation. The papers update the
latest research in their field, carried out since the last
conference in 2018. This book is suitable for engineers, students
and researchers who want to obtain an up-to-date view of the recent
advances in the area of mechanics.
Waste to Energy deals with the very topical subject of converting
the calorific content of waste material into useful forms of
energy. It complements and, to a certain degree, overlaps with its
companion volume, "Biomass to Biofuels", since a significant
proportion of biomass converted to energy nowadays originates from
various types of waste. The material in the first, more substantial
part of the volume has been arranged according to the type of
process for energy conversion. Biochemical processes are described
in six articles. These relate to the production of methane by
anaerobic digestion; reactor conversion efficiencies;
investigations on ethanol production from biodegradable municipal
solid waste through hydrolysis and fermentation; hydrogen
production from glucose through a hybrid anaerobic and
photosynthetic process; biodiesel production from used cooking oil
through base-catalyzed transesterification. Conversions by
thermochemical processes are discussed in the subsequent eleven
articles of the volume.These cover combustion, the direct use of
heat energy; using the heat produced in thermal power stations for
steam and, ultimately, electricity generation; municipal solid
waste and refuse-derived fuel. In another article, computational
fluid dynamics modelling is applied to assess the influence of
process parameters and to perform optimization studies. A group of
articles deal with more complex thermochemical processes involving
combustion combined with pyrolysis and gasification. Two articles
focus on biofuels as feed for fuel cells. In the last six articles,
the emphasis is on management and policy rather than technical
issues.
This book shows how the web-based PhysGL programming environment
(http://physgl.org) can be used to teach and learn elementary
mechanics (physics) using simple coding exercises. The book's theme
is that the lessons encountered in such a course can be used to
generate physics-based animations, providing students with
compelling and self-made visuals to aid their learning. Topics
presented are parallel to those found in a traditional physics
text, making for straightforward integration into a typical
lecture-based physics course. Users will appreciate the ease at
which compelling OpenGL-based graphics and animations can be
produced using PhysGL, as well as its clean, simple language
constructs. The author argues that coding should be a standard part
of lower-division STEM courses, and provides many anecdotal
experiences and observations, that include observed benefits of the
coding work.
The major developments in the field of fluid and solid mechanics
are scattered throughout an array of scientific journals, making it
often difficult to find what the real advances are, especially for
a researcher new to the field. The Advances in Applied Mechanics
book series draws together the recent significant advances in
various topics in applied mechanics.
Published since 1948, Advances in Applied Mechanics aims to provide
authoritative review articles on topics in the mechanical sciences,
primarily of interest to scientists and engineers working in the
various branches of mechanics, but also of interest to the many who
use the results of investigation in mechanics and various
application areas.
Advances in Applied Mechanics continues to be a publication of high
impact. Review articles are provided by leading scientists in the
field on an invitation only basis. Many of the articles published
have become classics within their fields.
Volume 39 in the Mechanics series contains articles on vortex
dynamics, the numerical simulation of two-phase flows,
environmental problems in China, and piezoelectrics.
This book examines the origins and dynamical characteristics of
atmospheric inertia-gravity waves in the Antarctic mesosphere.
Gravity waves are relatively small-scale atmospheric waves with a
restoring force of buoyancy that can transport momentum upward from
the troposphere to the middle atmosphere. In previous studies, the
dynamical characteristics of mesospheric gravity waves have not
been fully examined using numerical simulations, since performing a
numerical simulation with a high resolution and a high model-top
requires considerable computational power. However, recent advances
in computational capabilities have allowed us to perform numerical
simulations using atmospheric general circulation models, which
cover the troposphere to the mesosphere with a sufficiently fine
horizontal resolution to resolve small-scale gravity waves. The
book first describes the simulation of mesospheric gravity waves
using a high-resolution non-hydrostatic atmospheric model with a
high model top. The accuracy of the numerical results was confirmed
by the first Mesosphere-Stratosphere-Troposphere/Incoherent
Scattering (MST/IS) radar observation in the Antarctic. It also
depicts the origins and propagation processes of mesospheric
gravity waves on the basis of the results of the high-resolution
numerical model. The behaviors of mesospheric gravity waves can be
clearly explained using both fundamental and cutting-edge theories
of fluid dynamics
|
|