![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Classical mechanics
This book introduces readers to the shell structure, operating principle, manufacturing process, and control theory for cylindrical vibratory gyroscopes. The cylindrical vibratory gyroscope is an important type of Coriolis vibratory gyroscope that holds considerable potential for development and application. The main aspects addressed include: operating principle and structure, theoretical analysis and modeling, dynamic analysis and modeling, manufacturing process, parameter testing methods, closed-loop control, and the error compensation mechanism in cylindrical vibratory gyroscopes.
Inverse scattering theory is a major theme in applied mathematics, with applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting challenges in the development of efficient inversion algorithms. A further complication is that anisotropic materials cannot be uniquely determined from given scattering data. In the first edition of Inverse Scattering Theory and Transmission Eigenvalues, the authors discussed methods for determining the support of inhomogeneous media from measured far field data and the role of transmission eigenvalue problems in the mathematical development of these methods. In this second edition, three new chapters describe recent developments in inverse scattering theory. In particular, the authors explore the use of modified background media in the nondestructive testing of materials and methods for determining the modified transmission eigenvalues that arise in such applications from measured far field data. They also examine nonscattering wave numbers-a subset of transmission eigenvalues-using techniques taken from the theory of free boundary value problems for elliptic partial differential equations and discuss the dualism of scattering poles and transmission eigenvalues that has led to new methods for the numerical computation of scattering poles. This book will be of interest to research mathematicians and engineers and physicists working on problems in target identification. It will also be useful to advanced graduate students in many areas of applied mathematics.
This monograph is devoted to problems of propagation and stability of linear and nonlinear waves in continuous media with complex structure. It considers the different media, such as solid with cavities, preliminary deformed disperse medium, solid with porosity filled by the electrically conductive and non-conductive liquid, magnetoelastic, piezo-semiconductors, crystals with dislocations, composites with inclusions, an electrically conductive asymmetrical liquid, a mixture of gas with a drop liquid. The book also considers the propagation of a laser beam through a two-level medium. The presented results are based on methods of evolution and modulation equations that were developed by the authors. The book is intended for scientific and technical researchers, students and post-graduate students specializing in mechanics of continuous media, physical acoustics, and physics of the solid state.
This thesis provides an innovative strategy for rail crack monitoring using the acoustic emission (AE) technique. The field study presented is a significant improvement on laboratory studies in the literature in terms of complex rail profile and crack conditions as well as high operational noise. AE waves induced by crack propagation, crack closure, wheel-rail impact and operational noise were obtained through a series of laboratory and field tests, and analyzed by wavelet transform (WT) and synchrosqueezed wavelet transform (SWT). A wavelet power-based index and the enhanced SWT scalogram were sequentially proposed to classify AE waves induced by different mechanisms according to their energy distributions in the time-frequency domain. A novel crack sizing method taking advantage of crack closure-induced AE waves was developed based on fatigue tests in the laboratory. The propagation characteristics of AE waves in the rail were investigated, and Tsallis synchrosqueezed wavelet entropy (TSWE) with time was finally brought forward to detect and locate rail cracks in the field. The proposed strategy for detection, location and sizing of rail cracks helps to ensure the safe and smooth operation of the railway system. This thesis is of interest to graduate students, researchers and practitioners in the area of structural health monitoring.
Fluid turbulence is often referred to as `the unsolved problem of classical physics'. Yet, paradoxically, its mathematical description resembles quantum field theory. The present book addresses the idealised problem posed by homogeneous, isotropic turbulence, in order to concentrate on the fundamental aspects of the general problem. It is written from the perspective of a theoretical physicist, but is designed to be accessible to all researchers in turbulence, both theoretical and experimental, and from all disciplines. The book is in three parts, and begins with a very simple overview of the basic statistical closure problem, along with a summary of current theoretical approaches. This is followed by a precise formulation of the statistical problem, along with a complete set of mathematical tools (as needed in the rest of the book), and a summary of the generally accepted phenomenology of the subject. Part 2 deals with current issues in phenomenology, including the role of Galilean invariance, the physics of energy transfer, and the fundamental problems inherent in numerical simulation. Part 3 deals with renormalization methods, with an emphasis on the taxonomy of the subject, rather than on lengthy mathematical derivations. The book concludes with some discussion of current lines of research and is supplemented by three appendices containing detailed mathematical treatments of the effect of isotropy on correlations, the properties of Gaussian distributions, and the evaluation of coefficients in statistical theories.
Sound-Power Flow: A practitioner's handbook for sound intensity is a guide for practitioners and research scientists in different areas of acoustical science. There are three fundamental quantities in acoustics: sound pressure, sound particle velocity, and sound intensity. This book is about sound intensity and demonstrates the advantages and uses of acoustical sensing compared with other forms of sensing. It describes applications such as: measuring total sound power; directional hearing of humans and mammals; echolocation; measuring sound-power flow in ducts; and uses of non-contact, focused, high-frequency, pulse-echo ultrasonic probes. This book presents computational approaches using standard mathematics, and relates these to the measurement of sound-power flow in air and water. It also uses linear units rather than logarithmic units - this making computation in acoustics simpler and more accessible to advanced mathematics and computing. The book is based on work by the author and his associates at General Motors, the University of Mississippi, and Sonometrics.
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author's intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.
This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author's experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.
"Stochastic Tools in Mathematics and Science" covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. The topics covered include conditional expectations, stochastic processes, Brownian motion and its relation to partial differential equations, Langevin equations, the Liouville and Fokker-Planck equations, as well as Markov chain Monte Carlo algorithms, renormalization, basic statistical mechanics, and generalized Langevin equations and the Mori-Zwanzig formalism. The applications include sampling algorithms, data assimilation, prediction from partial data, spectral analysis, and turbulence. The book is based on lecture notes from a class that has attracted graduate and advanced undergraduate students from mathematics and from many other science departments at the University of California, Berkeley. Each chapter is followed by exercises. The book will be useful for scientists and engineers working in a wide range of fields and applications. For this new edition the material has been thoroughly reorganized and updated, and new sections on scaling, sampling, filtering and data assimilation, based on recent research, have been added. There are additional figures and exercises. Review of earlier edition: "This is an excellent concise textbook which can be used for self-study by graduate and advanced undergraduate students and as a recommended textbook for an introductory course on probabilistic tools in science." Mathematical Reviews, 2006
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engineers to get useful information on CFD for their activities. The procedural details are given with respect to particular tasks from the authors' field of research, for example simulations of liquid propellant rocket engine subsystems, turbo-pumps and the blood circulations in the human brain as well as the design of artificial heart devices. However, those examples serve as illustrations of computational and physical challenges relevant to many other fields. Unlike other books on incompressible flow simulations, no abstract mathematics are used in this book. Assuming some basic CFD knowledge, readers can easily transfer the insights gained from specific CFD applications in engineering to their area of interest.
Conceived as a series of more or less autonomous essays, the present book critically exposes the initial developments of continuum thermo-mechanics in a post Newtonian period extending from the creative works of the Bernoullis to the First World war, i.e., roughly during first the "Age of reason" and next the "Birth of the modern world". The emphasis is rightly placed on the original contributions from the "Continental" scientists (the Bernoulli family, Euler, d'Alembert, Lagrange, Cauchy, Piola, Duhamel, Neumann, Clebsch, Kirchhoff, Helmholtz, Saint-Venant, Boussinesq, the Cosserat brothers, Caratheodory) in competition with their British peers (Green, Kelvin, Stokes, Maxwell, Rayleigh, Love,..). It underlines the main breakthroughs as well as the secondary ones. It highlights the role of scientists who left essential prints in this history of scientific ideas. The book shows how the formidable developments that blossomed in the twentieth century (and perused in a previous book of the author in the same Springer Series: "Continuum Mechanics through the Twentieth Century", Springer 2013) found rich compost in the constructive foundational achievements of the eighteenth and nineteenth centuries. The pre-WWI situation is well summarized by a thorough analysis of treatises (Appell, Hellinger) published at that time. English translations by the author of most critical texts in French or German are given to the benefit of the readers.
This book focuses on CFD (Computational Fluid Dynamics) techniques and the recent developments and research works in energy applications. It is devoted to the publication of basic and applied studies broadly related to this area. The chapters present the development of numerical methods, computational techniques, and case studies in the energy applications. Also, they offer the fundamental knowledge for using CFD in energy applications through new technical approaches. Besides, they describe the CFD process steps and provide benefits and issues for using CFD analysis in understanding the flow complicated phenomena and its use in the design process. The best practices for reducing errors and uncertainties in the CFD analysis are further described. The book reveals not only the recent advances and future research trends of CFD Techniques but also provides the reader with valuable information about energy applications. It aims to provide the readers, such as engineers and PhD students, with the fundamentals of CFD prior to embarking on any real simulation project. Additionally, engineers supporting or being supported by CFD analysts can take advantage from the information of the book's different chapters.
This is the seventh volume in a series on the general topics of supersymmetry, supergravity, black objects (including black holes) and the attractor mechanism. The present volume is based on lectures held in March 2013 at the INFN-Laboratori Nazionali di Frascati during the Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity Workshop (BUDS 2013), organized by Stefano Bellucci, with the participation of prestigious speakers including P. Aschieri, E. Bergshoeff, M. Cederwall, T. Dennen, P. Di Vecchia, S. Ferrara, R. Kallosh, A. Karlsson, M. Koehn, B. Ovrut, A. Van Proeyen, G. Ruppeiner. Special attention is devoted to discussing topics related to the cancellation of ultraviolet divergences in extended supergravity and Born-Infeld-like actions. All talks were followed by extensive discussions and subsequent reworking of the various contributions a feature which is reflected in the unique "flavor" of this volume.
The book provides readers with an understanding of the mutual conditioning of spacetime and interactions and matter. The spacetime manifold will be looked at to be a reservoir for the parametrization of operation Lie groups or subgroup classes of Lie groups. With basic operation groups or Lie algebras, all physical structures can be interpreted in terms of corresponding realizations or representations. Physical properties are related eigenvalues or invariants. As an explicit example of operational spacetime is proposed, called electroweak spacetime, parametrizing the classes of the internal hypercharge - isospin group in the general linear group in two complex dimensions, i.e., the Lorentz cover group, extended by the casual (dilation) and phase group. Its representations and invariants will be investigated with the aim to connect them, qualitatively and numerically, with the properties of interactions and particles as arising in the representations of its tangent Minkowski spaces.
Phononic crystals are artificial periodic structures that can alter efficiently the flow of sound, acoustic waves, or elastic waves. They were introduced about twenty years ago and have gained increasing interest since then, both because of their amazing physical properties and because of their potential applications. The topic of phononic crystals stands as the cross-road of physics (condensed matter physics, wave propagation in inhomogeneous and periodic media) and engineering (acoustics, ultrasonics, mechanical engineering, electrical engineering). Phononic crystals cover a wide range of scales, from meter-size periodic structures for sound in air to nanometer-size structures for information processing or thermal phonon control in integrated circuits. Phononic crystals have a definite relation with the topic of photonic crystals in optics. The marriage of phononic and photonic crystals also provides a promising structural basis for enhanced sound and light interaction. As the topic is getting popular, it is nowadays presented and discussed at various international conferences. After the first ten years during which the topic has remained mainly theoretical with a few proof-of-concept demonstrations in the literature, the evolution has been towards applications, instrumentation, and novel designs. The physical explanations for various effects are now well understood and efficient numerical methods and analysis tools have been developed. The book contains a comprehensive set of finite element model (FEM) scripts for solving basic phononic crystal problems. The scripts are short, easy to read, and efficient, allowing the reader to generate for him(her)self band structures for 2D and 3D phononic crystals, to compute Bloch waves, waveguide and cavity modes, and more.
The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurements using thermometry and manometry, and brings all of the techniques together under one cover. This book fills the gap in international literature, as no other recently published book provides a comprehensive survey for gaseous media closely connected with thermometry. Updates in this new edition include revised appendices and new chapters on Mutual Recognition Agreement of the Comite International des Poids et Mesures and its main applications, and developments in the European Metrology Society.
Rapid growth of the mobile communication market has triggered extensive research on the bulk as well as surface acoustic wave devices in the last decade. Quite a few important results on the modeling and simulation of Film Bulk Acoustic Resonator (FBAR) and Layered SAW devices were reported recently. The other recent advance of acoustic waves in solids is the so-called phononic crystals or phononic band-gap materials. Analogous to the band-gap of light in photonic crystals, acoustic waves in periodic elastic structures also exhibit band-gap. Important applications of phononic band gap materials can potentially be found with creating a vibration free environment in microstructures, and design of advanced acoustic frequency filter, etc. In addition to the wave electronics and phononic crystals, to facilitate the emerging needs in the quantitative nondestructive evaluation of materials, waves in anisotropic solids and/or electro-, magneto- interaction problems also regained much attention recently. Topics treated include: Waves in piezoelectric crystals; Simulation of advanced BAW and SAW devices; Analysis of band gaps in phononic structures; Experimental investigation of phononic structures; Waves in multilayered media;Waves in anisotropic solids and/or electro-, magneto- interaction problems.
This book is based upon lectures presented in the summer of 2009 at the INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci. The symposium included such prestigious lecturers as S. Ferrara, G. Dall'Agata, J.F. Morales, J. Simon and M. Trigiante. All lectures were given at a pedagogical, introductory level, which is reflected in the specific "flavor" of this volume. The book also benefits from extensive discussions about, and the related reworking of, the various contributions. It is the fifth volume in a series of books on the general topics of supersymmetry, supergravity, black holes and the attractor mechanism.
Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn't restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of gravity and shows where it becomes incompatible with Minkowsky spacetime. Well illustrated and enriched by many historical notes, this book also presents many applications of special relativity, ranging from particle physics (accelerators, particle collisions, quark-gluon plasma) to astrophysics (relativistic jets, active galactic nuclei), and including practical applications (Sagnac gyrometers, synchrotron radiation, GPS). In addition, the book provides some mathematical developments, such as the detailed analysis of the Lorentz group and its Lie algebra. The book is suitable for students in the third year of a physics degree or on a masters course, as well as researchers and any reader interested in relativity. Thanks to the geometric approach adopted, this book should also be beneficial for the study of general relativity. "A modern presentation of special relativity must put forward its essential structures, before illustrating them using concrete applications to specific dynamical problems. Such is the challenge (so successfully met!) of the beautiful book by Eric Gourgoulhon." (excerpt from the Foreword by Thibault Damour) |
![]() ![]() You may like...
Evenings with the Orchestra - A Norton…
D. Kern Holoman
Hardcover
Bits and Pieces - A History of Chiptunes
Kenneth B. McAlpine
Hardcover
R2,774
Discovery Miles 27 740
|