|
|
Books > Science & Mathematics > Chemistry > Crystallography
The renowned Oxford Chemistry Primers series, which provides
focused introductions to a range of important topics in chemistry,
has been refreshed and updated to suit the needs of today's
students, lecturers, and postgraduate researchers. The rigorous,
yet accessible, treatment of each subject area is ideal for those
wanting a primer in a given topic to prepare them for more advanced
study or research. Moreover, cutting-edge examples and applications
throughout the texts show the relevance of the chemistry being
described to current research and industry. Learning features
provided in the primers, including questions at the end of every
chapter and interactive online MCQs, encourage active learning and
promote understanding. Furthermore, frequent diagrams, margin
notes, further reading, and glossary definitions all help to
enhance a student's understanding of these essential areas of
chemistry. This primer provides a succinct account of the technique
of X-ray crystallography for determining structure in the solid
state. Engaging examples of practical applications are described
throughout, emphasising the importance of this field to modern
research and industry. Furthermore, end of chapter exercises and
online multiple choice questions enable students to test their own
understanding of the subject. Online Resource Centre The Online
Resource Centre to accompany X-Ray Crystallography features: For
registered adopters of the text: * Figures from the book available
to download For students: * Downloadable CIF data files *
Multiple-choice questions for self-directed learning * Full worked
solutions to the end-of-chapter exercises
Crystallization is one of the oldest separation processes used in the chemical industry and is still one of the most important. The proposed primer will emphasize the link between a process engineering description of crystallizer design and operation and provide a thorough molecular level understanding of the kinetics of nucleation and crystal growth and of habit modification and polymorphism.
Die AEtzung als gezielte Anloesung einer Kristallflache zum Zwecke
der Erken- nung der Symmetrie und unter Umstanden der chemischen
Zusammensetzung ebendieser Flache geht vermutlich auf Daniell
(1816) zuruck. In der Folgezeit beschaftigte sich eine Vielzahl von
Mineralogen und Physikern mit AEtzexperi- menten an den
unterschiedlichsten naturlichen Substanzen. Mehr und mehr wurde die
AEtzmethode zum geeigneten Werkzeug, das es gestattete, in der Zeit
vor der Entdeckung der Roentgenstrahlen uber
Symmetriemehrdeutigkeiten von Kristallen zu entscheiden. Die
Monographie von Baumhauer (1894) gibt davon eindrucksvoll Kenntnis.
Mit der Entdeckung der Roentgenstrahlen und ihrer Anwendung zur
Struktur- untersuchung von Kristallen trat die AEtzmethode
naturgemass in den Hintergrund und wurde gewissermassen zur
teilweise belachelten Marotte einiger weniger Mineralogen, bis,
Anfang der funfziger Jahre, vor allem von Amelinckx und Gilman der
Zusammenhang zwischen Versetzungsstruktur und AEtzgrubenver-
teilung klar und uberzeugend herausgestellt wurde. So fand der
Umschlag vom makroskopischen Konzept der Symmetrieerkennung zum
mikroskopischen Kon- zept der Darstellung der Versetzungsstruktur
eines Kristalls statt. AEtzung wurde nun zu einer Methode der
Beschreibung des Realkristalls mit allen seinen Bau- fehlern, so
wie er dem Festkoerperchemiker und -physiker entgegentritt. Dem
beabsichtigten und gezielten Effekt der AEtzung steht der
unbeabsichtigte und zufallige Angriff einer Feststoffoberflache
durch Korrosion gegenuber. Daher ist "Korrosion" im engeren Sinn
nicht Thema der vorliegenden Monographie.
Aimed at graduate students and researchers, this book provides a comprehensive study of interfaces within and between materials, a central concern to all materials scientists. It is comprised of four parts, covering the structure, thermodynamics, kinetics, and properties of interfaces in crystalline materials. Emphasis throughout is on conceptual foundations through the exposition of simple models and descriptions of key experimental observations. The reader is taken through the foundations to the forefront of current reseach by two of the leading researchers in the area. Due to high levels of demand for use as a textbook, the hardback edition, previously available at £95.00, has been reprinted and reissued in cover-to-boards binding and priced at £49.50.
This volume is part 2 of a comprehensive treatise on the theory and
applications of electron-diffraction techniques, and has been
organized under the auspices of the Electron Diffraction Commission
of the International Union of Crystallography.
In the modern world of ever smaller devices and nanotechnology,
electron crystallography emerges as the most important method
capable of determining the structure of minute objects down to the
size of individual atoms. Crystals of only a few millionths of a
millimetre are studied. This is the first textbook explaining how
this is done. Great attention is given to symmetry in crystals and
how it manifests itself in electron microscopy and electron
diffraction, and how this symmetry can be determined and taken
advantage of in achieving improved electron microscopy images and
solving crystal structures from electron diffraction patterns.
Theory and practice are combined; experimental images, diffraction
patterns, formulae and numerical data are discussed in parallel,
giving the reader a complete understanding of what goes on inside
the "black boxes" of computer programs. This up-to-date textbook
contains the newest techniques in electron crystallography,
including detailed descriptions and explanations of the recent
remarkable successes in determining the very complex structures of
zeolites and intermetallics. The controversial issue of whether
there is phase information present in electron micrsocopy images or
not is also resolved once and for all. The extensive appendices
include computer labs which have been used at various courses at
Stockholm University and international schools in electron
crystallography, with applications to the textbook. Students can
download image processing programs and follow these lab
instructions to get a hands-on experience of electron
crystallography.
Basic Crystallography J. -J. Rousseau Department of Physics,
University of Maine, Le Mans, France Translated from the French by
A. James, University of Picardie, France Basic Crystallography
deals with the basic principles of geometrical crystallography
which are introduced through the study of lattices, symmetry
operations and the enumeration and construction of point groups and
space groups. Stereographic projection is used to enable students
to visualise crystallographic structures in real space. The author
devotes the second part of the book to X-ray crystallography,
showing how different diffraction directions depend on the lattice
and how spot intensities are related to the unit-cell. To give
students an understanding of the principles of structural
determination, the classical techniques of diffraction and methods
of interpreting spectra are examined. To tackle the more
challenging aspects of the subject, help is given to the student in
the form of exercises with answers and a computer disk accompanies
the book allowing readers to work through exercises and plot their
own crystallographic data. Written primarily for final year
undergraduate students of physics, chemistry, materials science and
geometry the book will also be useful for engineering students.
This book is divided in two parts. Part I provides a brief but
accurate summary of all the basic ideas, theories, methods, and
conspicuous results of structure analysis and molecular modelling
of the condensed phases of organic compounds: quantum chemistry,
the intermolecular potential, force field and molecular dynamics
methods, structural correlation, and thermodynamics. This Part is
written in simple and intuitive form, so that the reader may easily
find there the essential background for the discussions in the
second part. Part II exposes the present status of studies in the
analysis, categorization, prediction and control, at a molecular
level, of intermolecular interactions in liquids, solutions,
mesophases, and crystals. The main focus is here on the links
between energies, structures, and chemical or physical properties.
Die moderne Werkstofftechnologie ist dadurch gekennzeichnet, dass
sie in weit groesserem Masse, als es fruher moeglich schien,
metastabile Zustande fur die Herstellung von Legierungen und eine
damit verbundene Gefuge-Optimierung einsetzen kann. Beispiele sind
das mechanische Legieren oder etwa die Erstarrung aus tief
unterkuhlten Schmelzen. Die Verwendung ungewoehnlicher Tie-
gelmaterialen (z. B. der Aerogele), behalterfreie Verfahren oder
das Erschmelzen unter Schwere- losigkeit gestatten neue Einblicke,
neue Anwendungsmoeglichkeiten und weiteres Entwicklungs- potential
auf sehr breiter Front, auch in Richtung praktischer
Fragestellungen. Weiterhin ist an- zumerken, dass die moderne
rechnerische Simulation von Giess- und Erstarrungsvorgangen insbe-
sondere in der erstarrungstechnologischen Industrie einen
Entwicklungsschub hervorruft, der auf einer gesunden theoretischen
Basis aufbaut. Diese Entwicklung fuhrt zu innovativen Werkstoffen
und neuartigen Bauteilen, welche beide unter Nutzung ebenfalls
entsprechend modifizierter Pro- zesstechniken entstehen. Die dafur
erforderliche theoretische Grundlage profitiert insbesondere von
einem Zusammenwirken mehrerer wissenschaftlicher Disziplinen. Die
organisatorische und finanzielle Grundlage fur eine solche
interdisziplinare Zusammen- arbeit wurde 1993 durch die Einrichtung
des Graduiertenkollegs "Schmelze, Erstarrung, Grenz- flachen"
geschaffen. Das Kolleg wurde begleitet von einer Vorlesungsreihe,
die die Fachgebiete der beteiligten Institute, ihrer Stipendiaten
und Kollegiaten widerspiegelt. Von der Thermodyna- mik der
Schmelze, der Fluiddynamik und Transportphanomenen uber die Kinetik
der Erstarrung, mit eingeschlossen auch Seigerungsvorgange sowie
die damit verbundenen Wachstumsfrontmor- phologien, bis hin zu
Vorgangen im Festkoerper, insbesondere ausgeloest durch
Grenzflachen (Ost- waldreifung, Korngrenzendynamik), wurde vieles
verknupft, was nicht oft in einem Atemzug ge- nannt wird. Auch
technologische Fragestellungen wurden nicht ausgelassen, wie
beispielsweise die Prozesse in der Giessereitechnik.
Dieses Lehrbuch bietet eine gut verstAndliche EinfA1/4hrung in die
FestkArperchemie. ZunAchst werden die klassischen Grundlagen, wie
Kristallstrukturen und deren elektronische Eigenschaften,
erlAutert. Interessante Eigenschaften der FestkArper wie die
LeitfAhigkeit fA1/4hrten zu Anwendungen und Erforschung dieser
Substanzen in den Materialwissenschaften. Daher befassen sich die
Autoren intensiv mit SupraleitfAhigkeit, Batterien, Katalysatoren,
Halbleiter- und Lasertechnikanwendungen.
Over the past several decades, a This book deals with the
characterisation of the structure, the structure determination and
the study of the physical properties, especially dynamical and
electronic properties of aperiodic crystals. The treatment is based
on a description in a space with more dimensions than three, the
so-called superspace. This allows us to generalise the standard
crystallography and to look differently at the dynamics. The three
main classes of aperiodic crystals, modulated phases,
incommensurate composites and quasicrystals are treated from a
unified point of view, which stresses similarities of the various
systems. The book assumes as a prerequisite a knowledge of the
fundamental techniques of crystallography and the theory of
condensed matter, and covers the literature at the forefront of the
field. Since the first edition of this book in 2007, the field of
aperiodic crystals has developed considerably, with the discovery
of new materials and new structures. Progress has been made in
structure determination, in the interpretation and understanding of
the structural characteristics and in the calculation of electrons
and phonons. This new edition reflects these new developments, and
it includes discussions of natural quasicrystals, incommensurate
magnetic and multiferroic structures, photonic and mesoscopic
quasicrystals. The second edition also includes a number of new
exercises that give the reader an opportunityt to check their
understanding of the material.
The prediction of crystal structures from first principles has been
one of the grand challenges for computational methods in chemistry
and materials science. The goal of being able to reliably predict
crystal structures at an atomistic level of detail, given only the
chemical composition as input, presents several challenges. A
solution to the crystal structure prediction challenge requires
advances in several areas of computational chemistry. Theoretical
chemists have naturally been drawn to these challenges from an
academic perspective, while the development of methods for solving
the problem of crystal structure prediction has also been motivated
by a growing range of applications where reliable structure
prediction is sought and could guide experimentation. Crystal
structure predictions have been used to study organic molecules
such as polymorphism of pharmaceutical molecules, where changes in
crystal form can lead to changes in important physical and chemical
properties, which must be strictly controlled in a pharmaceutical
product, or inorganic materials where the discovery and
computational design of new materials with targeted properties,
such as porosity, electronic or mechanical properties are
necessary. However, the communities addressing methods and
applications in organic and inorganic crystal structure prediction
have largely remained separate, due to the different approaches
that have been used in these two areas. The community as a whole
will benefit from the cross-fertilisation of ideas and methods in
this volume, as well as from bringing theoreticians together with
interested experimentalists. The volume will appeal to researchers
from computational chemistry, informatics, physics (applying solid
state electronic structure methods) and materials science in the
development of methods. Applications of the methods also cover
several fields, including crystallography, crystal engineering,
mineralogy and pharmaceutical materials. This volume gathers key
researchers representing the full scientific scope of the topic,
including the developers of methods and software, those developing
the application of the methods and interested experimentalists who
may benefit from advances in predictive computational methods. In
this volume the topics covered include: Structure searching methods
Crystal structure evaluation: calculating relative stabilities and
other criteria Applications of crystal structure prediction -
organic molecular structures Applications of crystal structure
prediction - inorganic and network structures
To write an introductorytext coveringthe entire field of
mineralogy, including crystallography, petrology, and ore deposits,
may seem presumptuous to many today. The fact that the author has
taught this subject regularly through lectures and Iaboratories for
22 years is not in itself sufficient reason in his view. The
motivation to do so arose out of the necessity to provide for
students of this science and sister sciences 80 single useful and
comprehensive book. Previous texts have been designed with subjects
selected to conform to the courses taught at German Universities.
It is questionable whether this limitation is still or ever was
fortunate. Boundaries between the natural sciences have developed
histori- cally and should be maintained, in my opinion, only
80Spracticality dictates, such 80S in teaching. Each science is so
intimately linked with its sister science that boundaries tend to
disappear. It is known that interdisciplinary approaches frequently
promote particularly successful research. Thus, also in the field
of mineralogy, the influence of the allied sciences has been of
great importance. This is particularly true of the influence of
mathematics and physics on crystaIlo- graphy and of geology on
petrology. The changing emphasis on the one or the other branches
of our science, however, has not always been beneficiaI. For
example, it has resulted in judgments such 80S the following,
attributed to the renowned mineralogist A. G. WERNER, relative to
HAUEY, one of the founders of crystallography. The far-sighted
geologist L.
1. Historisme UEbersimt Die Entdeckung der Radioaktivitat hat, wie
im Weltbild der Physik uberhaupt, so auch in unseren Anschauungen
uber den Energiehaushalt der Erde eine Revolution bewirkt. Statt
auf einen von der Sonne mit- gegebenen Warmevorrat angewiesen zu
sein, der sich notwendigerweise durch Ausstrahlung verringern
musste, verfugt die Erde uber eine fort- wirkende Energiequelle in
ihrem Inneren, die dem Kernzerfall der radio- aktiven Bestandteile
der Erdrinde entstammt. Damit wurden nicht nur die alten, auf der
unkompensierten Ausstrahlung beruhenden Berechnungen des Alters der
Erde uber den Haufen geworfen, sondern wir wissen nun auch, dass
die Erdrinde mit allen ihren Mineralien standig einer radio-
aktiven Strahlung ausgesetzt ist, deren Wirkung in verschiedener
Hinsicht nicht zu vernachlassigen ist. Wir kennen aus
Laboratoriumsversuchen ausser der Warmewirkung der radioaktiven
Strahlungen, die fur den Warmehaushalt der Erde massgebend ist,
auch noch ihre Eingriffe in die innere Struktur der Koerper, die
sich in Ionisation, manchmal auch in Farbung und Lumineszenz
aussert, ja bis zur Zerstoerung des Kristall- gefuges fester
Koerper fuhren kann. Welche dieser Wirkungen wir in der Natur
vorfinden werden, wird einerseits von dem untersuchten Mineral
abhangen, andererseits von der Intensitat der radioaktiven
Strahlung in demselben. Besonders die Farbungen gewisser Mineralien
koennen als Anzeichen einer radioaktiven Einwirkung angesehen
werden, so die sogenannten pleochroitischen Hoefe, die ihre
radioaktive Herkunft schon durch die UEbereinstimmung ihrer Radien
mit den Reichweiten der a-Strahlen verraten, aber auch andere
dilute Farbungen, wie etwa jene des blauen Steinsalzes. Es ist ein
Verdienst des Wiener Mineralogen C.
|
|