![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Crystallography
The first systematic experiments in neutron scattering were carried out in the late 1940s using fission reactors built for the nuclear power programme. Crystallographers were amongst the first to exploit the new technique, but they were soon followed by condensed matter physicists and chemists. Engineers and biologists are the most recent recruits to the club of neutron users. The aim of the book is to provide a broad survey of the experimental activities of all these users. There are many specialist monographs describing particular examples of the application of neutron scattering: fifteen of such monographs have been published already in the Oxford University Press series edited by S. Lovesey and E. Mitchell. However this book will appeal to newcomers to the field of neutron scattering, who may be intimidated by the bewildering array of instruments at central facilities (such as the Institut Laue Langevin in France, the ISIS Laboratory in the UK, or the PSI Laboratory in Switzerland), and who may be uncertain as to which instrument to use.
For many years it was believed that translational symmetry would be the fundamental property of crystal structures of natural and synthetic compounds. It is now recognised that many compounds crystallise without translational symmetry of their atomic structures. "Incommensurate Crystallography" gives a comprehensive account of the superspace theory for the description of crystal structures and symmetries of these incommensurately modulated crystals and incommensurate composite crystals. It thus provides the necessary background for quantitative analysis of incommensurate crystals by methods in Solid State Chemistry and Solid State Physics. The second half of "Incommensurate Crystallography" is devoted to crystallographic methods of structural analysis of incommensurate compounds. Thorough accounts are given of the diffraction by incommensurate crystals, the choice of parameters in structure refinements, and the use of superspace in analysing crystal structures. The presentation of methods of structure determination includes modern methods like the Maximum Entropy Method and Charge Flipping.
Neutron Protein Crystallography is one of the first books dedicated
to the emerging field of neutron protein crystallography (NPC). The
text covers all of the practical aspects of NPC, from the basic
background of neutron scattering and diffraction, to the technical
details of neutron facilities, growth of high-quality crystals, and
data analysis. The final chapter is devoted to providing many
examples of using NPC to investigate a wide range of different
proteins. It demonstrates how NPC can explore hydrogen bonds,
protonation and deprotonation of amino acid residues, hydration
structures, and hydrogen-to-deuterium exchange ratios.
The terms 'liquid crystal' or 'liquid crystal display' (LCD) are
well-known in the context of flat-screen televisions, but the
properties and history of liquid crystals are little understood.
This book tells the story of liquid crystals, from their
controversial discovery at the end of the nineteenth century, to
their eventual acceptance as another state of matter to rank
alongside gases, liquids and solids. As their story unfolds, the
scientists involved and their works are put into illuminating
broader socio-political contexts. In recent years, liquid crystals
have had a major impact on the display industry, culminating in the
now widely available flat-screen televisions; this development is
described in detail over three chapters, and the basic science
behind it is explained in simple terms accessible to a general
reader. New applications of liquid crystals in materials,
bio-systems, medicine and technology are also explained.
'To summarise, Professor Ladd has written a highly engaging text designed to provide the underlying principles of crystal structure determination through X-ray diffraction data. This text would be most appropriate for an early stage postgraduate or researcher interested in learning both the underlying principles of crystallography and gaining some practice with structure-solving software.'Contemporary PhysicsDesigned for those who wish to understand and engage with the principles behind the process of crystal structure determination by X-ray diffraction, this title contains a comprehensive series of chapters, each of which concludes with a set of problems, for which solutions are provided. An ideal resource for senior undergraduates and early-stage postgraduates, The Essence of Crystallography has an accompanying website with programs written for the text, including an interactive simulation of crystal structure determination using prepared intensity data sets.
This book aims to explain how and why the detailed three-dimensional architecture of molecules can be determined by an analysis of the diffraction patterns obtained when X rays or neutrons are scattered by the atoms in single crystals. Part 1 deals with the nature of the crystalline state, diffraction generally, and diffraction by crystals in particular, and, briefly, the experimental procedures that are used. Part II examines the problem of converting the experimentally obtained data into a model of the atomic arrangement that scattered these beams. Part III is concerned with the techniques for refining the approximate structure to the degree warranted by the experimental data. It also describes the many types of information that can be learned by modern crystal structure analysis. There is a glossary of terms used and several appendixes to which most of the mathematical details have been relegated.
Cloud physics is concerned with those processes which are responsible for the formation of clouds and the release of precipitation. This classic book gives a comprehensive and detailed account of experimental and theoretical research on the microphysical processes of nucleation, condensation, droplet growth, initiation and growth of snow crystals, and the mechanisms of precipitation release. As a textbook it is designed to give the student the necessary background to carry out independent work. As a reference book for the research worker, it provides an integrated account of the major developments in this field. Although written primarily for the atmospheric physicist, it contains much of interest for those in the fields of nucleation phenomena, crystal growth, and aerosol physics.
This text focuses on the practical aspects of crystal structure
analysis, and provides the necessary conceptual framework for
understanding and applying the technique. By choosing an approach
that does not put too much emphasis on the mathematics involved,
the book gives practical advice on topics such as growing crystals,
solving and refining structures, and understanding and using the
results. The technique described is a core experimental method in
modern structural chemistry, and plays an ever more important role
in the careers of graduate students, postdoctoral and academic
staff in chemistry, and final-year undergraduates.
The first systematic experiments in neutron scattering were carried out in the late 1940s using fission reactors built for the nuclear power programme. Crystallographers were amongst the first to exploit the new technique, but they were soon followed by condensed matter physicists and chemists. Engineers and biologists are the most recent recruits to the club of neutron users. The aim of the book is to provide a broad survey of the experimental activities of all these users. There are many specialist monographs describing particular examples of the application of neutron scattering: fourteen of such monographs have been published already in the Oxford University Press series edited by S. Lovesey and E. Mitchell. However this book will appeal to newcomers to the field of neutron scattering, who may be intimidated by the bewildering array of instruments at central facilities (such as the Institut Laue Langevin in France, the ISIS Laboratory in the UK, or the PSI Laboratory in Switzerland), and who may be uncertain as to which instrument to use.
This book is the first book dealing with structural crystallography of inorganic oxysalts in general. A special emphasis is placed upon structural topology and methods of its description. The latter include graph theory, nets, 2-D and 3-D tilings, polyhedra, etc. The structures considered range from minerals to organically templated oxysalts, for all of which this book provides a unified approach to structure interpretation and classification. Most of the structures have been analysed from the proposed viewpoint for the first time and it has been shown that they possess the same topological genealogy and relationships, sometimes despite their obvious chemical differences. In order to expand the range of oxysalts considered, the book offers not only traditional schemes but also alternative approaches such as anion topologis, anion-centered polyhedra and cation arrays. As such, this book can be considered as a comprehensive introduction into the amazingly complex and diverse world of inorganic oxysalts.
This book introduces in a thorough and self-contained way the production of electromagnetic radiation by high energy electron storage rings. This radiation, which is called synchroton radiation, has become a research tool of wide application. Physicists, chemists, biologists, geologists, engineers, material scientists, and other scientific disciplines use it as a structural probe for the study of surfaces, bulk material, crystals, and viruses. Solids, liquids and gases can be spectroscopically analysed by using synchroton radiation. This book brings together for the first time the properties as well as the means of production of synchroton radiation and presents them in a coherent and clear way. It will be an indispensable reference for all those involved in modern synchroton radiation experiments.
A unique text presenting practical information on the topic of nucleation and crystal growth processes from metastable solutions and melts Nucleation and Crystal Growth is a groundbreaking text thatoffers an overview and description of the processes and phenomena associated with metastability of solutions and melts. The author--a noted expert in the field--puts the emphasis on low-temperature solutions that are typically involved in crystallization in a wide range of industries. The text begins with a review of the basic knowledge of solutions and the fundamentals of crystallization processes. The author then explores topics related to the metastable state of solutions and melts from the standpoint of three-dimensional nucleation and crystal growth. Nucleation and Crystal Growth is the first text that contains a unified description and discussion of the many processes and phenomena occurring in the metastable zone of solutions and melts from the consideration of basic concepts of structure of crystallization. This important text: Outlines an interdisciplinary approach to the topic and offers an essential guide for crystal growth practitioners in materials science, physics, and chemical engineering Contains a comprehensive content that details the crystallization processes starting from the initial solutions and melts, all the way through nucleation, to the final crystal products Presents a unique focus and is the first book on understanding, and exploiting, metastability of solutions and melts in crystallization processes Written for specialists and researchers in the fields of materials science, condensed matter physics, and chemical engineering. Nucleation and Crystal Growth is a practical resource filled with hands-on knowledge of nucleation and crystal growth processes from metastable solutions and melts.
Small-angle scattering of X-rays (SAXS) and neutrons (SANS) is an established method for the structural characterization of biological objects in a broad size range from individual macromolecules (proteins, nucleic acids, lipids) to large macromolecular complexes. SAXS/SANS is complementary to the high resolution methods of X-ray crystallography and nuclear magnetic resonance, allowing for hybrid modeling and also accounting for available biophysical and biochemical data. Quantitative characterization of flexible macromolecular systems and mixtures has recently become possible. SAXS/SANS measurements can be easily performed in different conditions by adding ligands or binding partners, and by changing physical and/or chemical characteristics of the solvent to provide information on the structural responses. The technique provides kinetic information about processes like folding and assembly and also allows one to analyze macromolecular interactions. The major factors promoting the increasingly active use of SAXS/SANS are modern high brilliance X-ray and neutron sources, novel data analysis methods, and automation of the experiment, data processing and interpretation. In this book, following the presentation of the basics of scattering from isotropic macromolecular solutions, modern instrumentation, experimental practice and advanced analysis techniques are explained. Advantages of X-rays (rapid data collection, small sample volumes) and of neutrons (contrast variation by hydrogen/deuterium exchange) are specifically highlighted. Examples of applications of the technique to different macromolecular systems are considered with specific emphasis on the synergistic use of SAXS/SANS with other structural, biophysical and computational techniques.
This book is a revised and updated English edition of a textbook that has grown out of several years of teaching. The term "inorganic" is used in a broad sense as the book covers the structural chemistry of representative elements (including carbon) in the periodic table, organometallics, coordination polymers, host-guest systems and supramolecular assemblies. Part I of the book reviews the basic bonding theories, including a chapter on computational chemistry. Part II introduces point groups and space groups and their chemical applications. Part III comprises a succinct account of the structural chemistry of the elements in the periodic table. It presents structure and bonding, generalizations of structural trends, crystallographic data, as well as highlights from the recent literature.
Macromolecular Crystallography is the study of macromolecules (proteins and nucleic acids) using X-ray crystallographic techniques in order to determine their molecular structure. The knowledge of accurate molecular structures is a pre-requisite for rational drug design, and for structure-based function studies to aid the development of effective therapeutic agents and drugs. The successful determination of the complete genome (genetic sequence) of several species (including humans) has recently directed scientific attention towards identifying the structure and function of the complete complement of proteins that make up that species; a new and rapidly growing field of study called 'structural genomics'. There are now several important and well-funded global initiatives in operation to identify all of the proteins of key model species. One of the main requirements for these initiatives is a high-throughput crystallization facility to speed-up the protein identification process. The extent to which these technologies have advanced, calls for an updated review of current crystallographic theory and practice. This practical reference book features the latest conventional and high-throughput methods, and includes contributions from a team of internationally recognized leaders and experts. It will be of relevance and use to graduate students, research scientists and professionals currently working in the field of conventional and high-throughput macromolecular crystallography.
This concise book for chemists, material scientists, and physicists who deal with description of crystalline matter and the determination of its structure, and would like to gain more understanding of the principles involved. The main purpose of the book is to introduce the reader to principles of crystallographic symmetry, to discuss some traditional, as well as modern, experimental techniques, to formulate the phase problem of crystallographic symmetry, to discus some traditional, as well as modern, experimental techniques, to formulate the phase problem of crystallography, and present in some detail the methods for its indirect and direct solution which are indispensable for further work. The book also contains discussions of structure-factor statistics, or value for resolving space-group ambiguities, and atomic displacement parameters, which form an inseparable part of the structure. A discussion of the refinement of structural parameters, conventional, constrained and restrained, concludes the book. Derivations are as far as possible, self contained and wherever mathematical detail might disrupt the line of reasoning the reader is referred to on of four appendices present in the book. The book is of course valuable for students of crystallography at a graduate and upper undergraduate level. No previous course on crystallography is a prerequisite for graduates in the above fields.
Most people are familiar with the fact that diamond and graphite are both composed only of carbon; yet they have very different properties which result from the very different structures of the two solids - they are polymorphs of carbon. Understanding the relationship between the structures and the properties of materials is of fundamental importance in developing and producing new materials with improved or new properties. The existence of polymorphic systems allows the direct study of the connection between structures and properties. This book provides grounding on the fundamental structural and energetic basis for polymorphism, the preparation and characterization of polymorphic substances and its importance in the specific areas of pharmaceuticals, pigments and high energy (explosive) materials. The closing chapter describes the intellectual property implications and some of the precedent patent litigations in which polymorphism has played a central role. The book contains over 2500 references to provide a ready entry into the relevant literature.
Architects of Structural Biology is an amalgam of memoirs, biography, and intellectual history of the personalities and single-minded devotion of four scientists who are among the greatest in modern times. These three chemists and one physicist, all Nobel laureates, played a pivotal role in the creation of a new and pervasive branch of biology. This led in turn to major developments in medicine and to the treatment of diseases as a result of advances made in arguably one of the greatest centres of scientific research ever: the Laboratory of Molecular Biology in Cambridge, which they helped to establish. Their work and that of their predecessors at the Royal Institution in London reflects the broader cultural, scientific and educational strength of the UK from the early 19th century onwards. The book also illustrates the nurturing of academic life in the collegiate system, exemplified by the activities of, and cross-fertilization within, a small Cambridge college.
Clear, concise explanation of the logical development of basic crystallographic concepts. Extensive discussion of crystals and lattices, symmetry, crystal systems and geometry, x-ray diffraction, determination of atomic positions and more. Well-chosen selection of problems, with answers. Ideal for a course in crystallography or as a supplement to physical chemistry courses. "This is truly a delightful monograph"-Canadian Chemical Education. 1969 edition. 114 illustrations.
This book describes how the arrangement and movement of atoms in a solid are related to the forces between atoms, and how they affect the behaviour and properties of materials. The book is intended for final year undergraduate students and graduate students in physics and materials science.
This book is the only book on the subject written to explain the basics of synchrotron radiation for scientists including life sciences, chemistry, and medicine. It can also be used as a textbook at the undergraduate or graduate level.
This book is structured by two-level presentation including a simple descriptive treatment and slightly more in-depth discussions of specific topics. The first-level treatment covers the notions, terminology and techniques that are required to use a synchrotron facility. The book is therefore an ideal first step for all those beginning to use synchrotron light for their work or are considering it. The treated topics include the basic functioning mechanisms of synchrotrons and free electron lasers a description of sychrotron-based techniques in x-ray imaging and radiology, spectroscopy, microscopy and spectromicroscopy, EXAFS, crystallography and scattering, and microfabrication.
Science does not offer a quiet life. Imagination, creativity, ambition, and conflict are as vital and abundant in science as in artistic endeavours. In this delightful collection of essays, Nobel Laureate Max Perutz writes about the pursuit of scientific knowledge, which he sees as an enterprise providing not just a few facts but cause for reflection and revelation. This book contains detective stories, tales of conflict and battle, a woman's love affair with crystals, a man's gruesome fascination with poison gas, perils both phantom and real, and entertaining glimpses of Perutz's own long and exceptional life. Perutz views science as a passionate enterprise and the pursuit of knowledge as a sortie into the unknown: these essays explore a remarkable range of topics, both scientific and personal, with the lucidity and precision that he brought to his own pioneering work in protein crystallography.
The present book is an accessible, comprehensive guide to diffuse neutron scattering, an important technique for studying structural disorder in materials. The text takes the reader through theoretical, computational and experimental developments in the subject and describes in detail its application to a number of structural disorder problems. These include the more traditional subjects of substitutional disorder in alloys and orientational disorder in molecular systems as well as the more recent studies of superionic and framework materials. Particular emphasis is placed on recent refinement methods for data interpretation which are compared with established computer simulation techniques and analytical approaches. The book collects disparate themes into one unique volume, written as an introduction to the method for graduate scientists. It will be a valuable reference text for any crystallographer keen to understand and apply modern interpretative techniques to diffuse scattering data.
The mathematical modelling of changing structures in materials is
of increasing importance to industry where applications of the
theory are found in subjects as diverse as aerospace and medicine.
This book deals with aspects of the nonlinear dynamics of
deformable ordered solids (known as |
![]() ![]() You may like...
Goodnight Golda - A Handbook For Brave…
Batya Bricker, Ilana Stein
Paperback
|