![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Crystallography
Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.
This book features the essential material for any graduate or advanced undergraduate course covering solid-state electrochemistry. It provides the reader with fundamental course notes and numerous solved exercises, making it an invaluable guide and compendium for students of the subject. The book places particular emphasis on enhancing the reader's expertise and comprehension of thermodynamics, the Kroeger-Vink notation, the variation in stoichiometry in ionic compounds, and of the different types of electrochemical measurements together with their technological applications. Containing almost 100 illustrations, a glossary and a bibliography, the book is particularly useful for Master and PhD students, industry engineers, university instructors, and researchers working with inorganic solids in general.
LCs are self-organized anisotropic fluids that are thermodynamically located between the isotropic liquid and the crystalline phase, exhibiting the fluidity of liquids as well as the long-range lattice order that can only be found in crystalline solids. The addition of nanomaterials to a LC material produces a composite or colloidal dispersion and results into a revolutionary change in their applications. This book will discuss the remarkable performances of nano-particle aided liquid crystals in metamaterials, photonics, functionalized polymer fibres, sensing, and medical diagnostics.
Discusses modeling of Metal Matrix Composite (MMC) and fabrication of Hybrid MMCs Covers advanced characterization studies of nanocomposites Reviews high temperature applications and cobalt -nickel combination materials Provides inputs regarding optimal selection of percentage of reinforcement materials for MMCs fabrication based on industrial requirements Focusses on aerospace and automotive industries
Provides description of functional foams, their manufacturing methods, properties, and applications Covers various blowing agents, greener methods for foaming, and emerging applicability Illustrates comparative information regarding polymeric foams and recent developments with polymer nanocomposite foams Includes applications in mechanical, civil, biomedical, food packaging, electronics, health care industry, and acoustics fields Reviews elastomeric foams and their nanocomposite derivatives
The mathematical modelling of changing structures in materials is
of increasing importance to industry where applications of the
theory are found in subjects as diverse as aerospace and medicine.
This book deals with aspects of the nonlinear dynamics of
deformable ordered solids (known as
This systematic and comprehensive monograph is devoted to parametric X-ray radiation (PXR). This radiation is generated by the motion of electrons inside a crystal, whereby the emitted photons are diffracted by the crystal and the radiation intensity critically depends on the parameters of the crystal structure. Nowadays PXR is the subject of numerous theoretical and experimental studies throughout the world. The first part of the book is a theoretical treatment of PXR, which includes a new approach to describe the radiation process in crystals. The second part is a survey of PXR experimental results and the possible applications of PXR as a tool for crystal structure analysis and a source of tunable X-ray radiation.
This book bridges the gap between theoretical concepts and their implementations, especially for the high-performance structures/components related to advanced composite materials. This work focuses on the prediction of various structural responses such as deformations, natural frequencies etc. of advanced composites under complex environments and/or loading conditions. In addition, it discusses micro-mechanical material modeling of various advanced composite materials that involve different structures ranging from basic to advanced, such as beams, flat and curved panels, shells, skewed, corrugated, and other materials, as well as various solution techniques via analytical, semi-analytical, and numerical approaches. This book: Covers micro-mechanical material modeling of advanced composite materials Describes constitutive models of different composite materials and kinematic models of different structural configuration Discusses pertinent analytical, semi-analytical, and numerical techniques Focusses on structural responses relating to deformations, natural frequencies, and critical loads under complex environments Presents actual demonstrations of theoretical concepts as applied to real examples using Ansys APDL scripts This book is aimed at researchers, professionals, and graduate students in mechanical engineering, material science, material engineering, structural engineering, aerospace engineering, and composite materials.
Direct methods are, at present, applied to a large variety of cases: X-ray, neutron or electron data; single crystal and powder data; small molecules and macromolecules. While direct methods solved in practice the phase problem for small molecules, their application to macromolecules is recent and still undergoing strong development. The fundamentals of the methods are described: in particular it is shown how the methods can be optimized for powder, neutron or electron data, and how they can be integrated with isomorphous replacement, molecular replacement and anomalous dispersion techniques. Maximum Entropy methods are also described and discussed. Sets of test structures are used to verify, throughout the various chapters, the mathematical techniques there described and to provide practical examples of applications. This book will appeal to a wide variety of readers - offering both a comprehensive description of direct methods in crystallography and an invaluable reference tool. The first three chapters can be considered as an introduction to the field, with sufficient material to constitute a university course and for allowing the expert use of most direct methods programs. Subsequent chapters are aimed at graduate students and working crystallographers. Basic results are described and discussed in the main body of the text, while the appendices compliment these with in depth mathematical details. The quoted literature is extremely wide and the interested reader can find suggestions for future work and further reading throughout the book.
Crystals are everywhere, from natural crystals (minerals) through the semiconductors and magnetic materials in electronic devices and computers or piezoelectric resonators at the heart of our quartz watches to electro-optical devices. Understanding them in depth is essential both for pure research and for their applications. This book provides a clear, thorough presentation of their symmetry, both at the microscopic space-group level and the macroscopic point-group level. The implications of the symmetry of crystals for their physical properties are then presented, together with their mathematical description in terms of tensors. The conditions on the symmetry of a crystal for a given property to exist then become clear, as does the symmetry of the property. The geometrical representation of tensor quantities or properties is presented, and its use in determining important relationships emphasized. An original feature of this book is that most chapters include exercises with complete solutions. This allows readers to test and improve their understanding of the material. The intended readership includes undergraduate and graduate students in materials science and materials-related aspects of electrical and optical engineering; researchers involved in the investigation of the physical properties of crystals and the design of applications based on crystal properties such as piezoelectricity, electro-optics, optical activity and all those involved in the characterization of the structural properties of materials.
Covers the synthesis and properties of polymer nanocomposites for varied usage Explains role of different types of nanofillers in polymeric systems for developing supercapacitor Highlights theory, modelling and simulation of polymeric supercapacitors Gives an illustrative overview of the multiple applications of polymers and their nanocomposites Includes graphene, CNT, nanoparticle, carbon and nano-cellulose based supercapacitors
This comprehensively revised - essentially rewritten - new edition of the 1990 edition (described as "extremely useful" by MATHEMATICAL REVIEWS and as "understandable and comprehensive" by Scitech) guides readers through the dense array of mathematical information in the International Tables Volume A. Thus, most scientists seeking to understand a crystal structure publication can do this from this book without necessarily having to consult the International Tables themselves. This remains the only book aimed at non-crystallographers devoted to teaching them about crystallographic space groups.
This volume presents reviews of topical areas in structural determination and structural chemistry, edited from the Proceedings of the 8th Symposium on Organic Crystal Chemistry, held at Poznan-Rydzyna, Poland in 1992. In this volume the definition of organic crystallography is interpreted widely to include factors influencing conformation, packing arrangements, and intermolecular bonding, as well as the determination of the positions and motions of the constituent atoms in molecular structures. An opening chapter introduces the edited proceedings which cover some of the most active areas in the structural determination and structural chemistry of small organic molecules in the crystalline state. The final chapter examines the current concerns of the adherents of organic crystallography and the future role and status of organic crystallography in structural science. The volume is divided into four sections: collection and treatment of diffraction data; crystalline-state reactions; structure correlation and structure-activity relations; and conformation, packing, and bonding in molecular crystals.
The structure-property relationship is a key topic in materials science and engineering. To understand why a material displays certain behaviors, the first step is to resolve its crystal structure and reveal its structure characteristics. Fundamentals of Crystallography, Powder X-ray Diffraction, and Transmission Electron Microscopy for Materials Scientists equips readers with an in-depth understanding of using powder x-ray diffraction and transmission electron microscopy for the analysis of crystal structures. Introduces fundamentals of crystallography Covers XRD of materials, including geometry and intensity of diffracted x-ray beams and experimental methods Describes TEM of materials and includes atomic scattering factors, electron diffraction, and diffraction and phase contrasts Discusses applications of HRTEM in materials research Explains concepts used in XRD and TEM lab training Based on the author's course lecture notes, this text guides materials science and engineering students with minimal reliance on advanced mathematics. It will also appeal to a broad spectrum of readers, including researchers and professionals working in the disciplines of materials science and engineering, applied physics, and chemical engineering.
Paul Ewald's 1916-1917 masterpiece "On the Foundations of Crystal Optics" described the self-consistent interaction of electromagnetic waves with crystals on a molecular level. While astonishing in its detailed predictions for X-ray diffraction, full appreciation of the theory and its utility had to await much later advances in measurement techniques and crystal growth. Today, concepts introduced in the theory--now known as the Ewald sphere, Ewald summation, and Ewald-Oseen extinction--have become mainstays in diverse areas of modern physics. This memorial volume, with contributions by leading figures in the field, is an affectionate survey of Ewald's life, scientific work, and leading role in the international crystallographic community. Historians of science, and particularly of solid state physics and crystallography, will find this volume a compelling and fascinating tribute to this important scientist.
A complete account of the theory of the diffraction of x-rays by
crystals with particular reference to the processes of determining
the structures of protein molecules, this book is aimed primarily
at structural biologists and biochemists but will also be valuable
to those entering the field with a background in physical sciences
or chemistry. It may be used at any post-school level, and develops
from first principles all relevant mathematics, diffraction and
wave theory, assuming no mathematical knowledge beyond integral
calculus.
The self-contained properties of discotic liquid crystals (DLCs) render them powerful functional materials for many semiconducting device applications and models for energy and charge migration in self-organized dynamic functional soft materials. The past three decades have seen tremendous interest in this area, fueled primarily by the possibility of creating a new generation of organic semiconductors and wide viewing displays using DLCs. While a number of books on classical calamitic liquid crystals are available, there are, as yet, no books that are dedicated exclusively to the basic design principles, synthesis, and physical properties of DLCs. The first reference book to cover DLCs, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers highlights the chemistry and thermal behavior of DLCs. Divided into six chapters, each with a general description, background, and context for the concepts involved, the book begins with a basic introduction to liquid crystals, describing molecular self-assembly and various types of liquid crystals. It outlines their classification, covers their history and general applications, and focuses on DLCs and their discovery, structure, characterization, and alignment. The book goes on to examine the chemistry and physical properties of various monomeric DLCs, including 25 sections describing the synthesis and mesomorphic properties of monomeric DLCs formed by different cores. The bulk of the book covers the chemistry and mesomorphism of discotic dimers, oligomers, and polymers and concludes with a look at some applicable properties of DLCs. A comprehensive and up-to-date resource, this book is designed to be accessible and of value not just for students and researchers but also to the directors and principal investigators working in this field, providing the foundation and fuel to advance this fast-growing technological field.
Crystal engineers need an understanding of bonding theory, computational chemistry, applied spectroscopy, structural methods, synthesis strategies, and applications of custom-designed solids. This book contains chapters on all these topics, written by internationally recognized experts, plus contributions from leading researchers in the field.
Discusses advances in the computation of phase diagrams Offers expanded treatment of eutectic solidification with practical examples and new coverage of ternary phase diagrams, covering the concepts of orthoequilibrium and paraequilibrium Updates discussion of bainite transformation to reflect current opinions Includes new case studies covering grain refiners in aluminium alloys, additive manufacturing, thin film growth, important aerospace Al-Li alloys, and quenched and partitioned steels, and metastable austenitic stainless steels. Each chapter now begins with a list of key concepts, includes simpler illustrative exercises with relevance to real practical applications, and references to scientific publications updated to reflect experimental and computational advances in metallurgy
A composite sandwich panel is a hybrid material made up of constituents such as a face sheet, a core, and adhesive film for bonding the face sheet and core together. Advances in materials have provided designers with several choices for developing sandwich structures with advanced functionalities. The selection of a material in the sandwich construction is based on the cost, availability, strength requirements, ease of manufacturing, machinability, and post-manufacturing process requirements. Sandwich Composites: Fabrication and Characterization provides insights into composite sandwich panels based on the material aspects, mechanical properties, defect characterization, and secondary processes after the fabrication, such as drilling and repair. FEATURES Outlines existing fabrication methods and various materials aspects Examines composite sandwich panels made of different face sheets and core materials Covers the response of composite sandwich panels to static and dynamic loads Describes parameters governing the drilling process and repair procedures Discusses the applications of composite sandwich panels in various fields Explores the role of 3D printing in the fabrication of composite sandwich panels Due to the wide scope of the topics covered, this book is suitable for researchers and scholars in the research and development of composite sandwich panels. This book can also be used as a reference by professionals and engineers interested in understanding the factors governing the material properties, material response, and the failure behavior under various mechanical loads.
This book covers a range of new research on computational quantum chemistry, along with a special section devoted to exotic carbon allotropes and spiro quantum theory. The section on spiro quantum theory covers the technical presentation of the ideas surrounding the emergence of a synthetic, analytical, and theoretical spiro quantum chemistry edifice, as well as a chemical topology scheme that successfully describes molecules and patterns, including the hydrocarbons and allotropes of carbon. The second part of the book covers a range of new research on computational quantum chemistry. |
You may like...
10 Cloverfield Lane
Mary Elizabeth Winstead, John Goodman
Blu-ray disc
(2)R271 Discovery Miles 2 710
Carry On: The Ultimate Collection
Kenneth Williams, Joan Sims, …
DVD
(2)
The Floral Cabinet and Magazine of…
G B (George Beauchamp) 18 Knowles, Frederic -1861 Westcott, …
Hardcover
R885
Discovery Miles 8 850
Little Bird Of Auschwitz - How My Mother…
Alina Peretti, Jacques Peretti
Paperback
Tax Law - An Introduction
Thabo Legwaila, Annet Wanyana Oguttu, …
Paperback
|