![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Crystallography
This book gives a systematic overview on the scientific fundamentals of crystal growth from the classical phenomenological description to the recent theoretical contributions of statistical physics such as studies on surface roughening and on the pattern formation in the diffusion-limited growth.The book emphasizes physical concepts as well as mathematical details, and is intended to serve as lecture notes for postgraduate courses.
This work deals with the effect of crystal symmetry in determining the tensor properties of crystals. Although this is a well-established subject, the author provides a fresh approach using group theory and, in particular, the method of symmetry coordinates, which has not been used in previous books. Using this approach, all tensors of a given rank and type can be handled together, even when they involve very different physical phenomena. Applications to technologically important phenomena as diverse as the electro-optic, piezoelectric, photoelastic, piezomagnetic, and piezoresistance effects, as well as magnetothermoelectric power and third-order elastic constants, are presented. Attention is also given to special magnetic properties - that is, those that require the concepts of time reversal and magnetic symmetry, an important subject not always covered in other books in this area. This book should be of interest to researchers in solid state physics and materials science, and should also be suitable as a text for graduate students in physics and engineering taking courses in solid state physics.
The molecular mechanisms underlying the fact that a crystal can
take a variety of external forms is something we have come to
understand only in the last few decades. This is due to recent
developments in theoretical and experimental investigations of
crystal growth mechanisms.
Zeolites and related microporous materials are used in oil processing and in the fine and petrochemical industries on a large scale. New applications of zeolites contribute to environmentally friendly processes and refined zeolites such as catalytic zeolite membranes and zeolites containing exhaust-pipe reactors are being introduced. Recent diversity in zeolite research has been fueled by the increase in number of microporous materials and the combination with interfacing science areas. The possibility to accommodate ions, large molecules or nanostructures in the crystalline matrix has been explored and the performance of electronic, acoustic and photonic modified response of the materials has been tested. This volume provides up-to-date information on new zeolite and related materials and composites, their applications, testing of new processes and techniques, and promising laboratory results as well. A vast amount of work from a fundamental aspect is incorporated. In particular, the combination of science and application offers useful information for readers interested in molecular sieves.
The author applies methods of nonlinear elasticity to investigate the defects in the crystal structure of solids such as dislocations and disclinations that characterize the plastic and strength properties of many materials. Contrary to the geometrically motivated nonlinear theory of dislocations continuously distributed over the body, nonlinear analysis of isolated dislocations and disclinations is less developed; it is given for the first time in this book, and in a form accessible to both students and researchers. The general theory of Volterra's dislocations in elastic media under large deformations is developed. A number of exact solutions are found. The nonlinear approach to investigating the isolated defects produces results that often differ qualitatively from those of the linear theory.
This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.
Structure of Crystals describes the ideal and real atomic structure of crystals as well as the electronic structures. The fundamentals of chemical bonding between atoms are given, and the geometric representations in the theory of crystal structure and crystal chemistry, as well as the lattice energy, are considered. The important classes of crystal structures in inorganic compounds as well as the structures of polymers, liquid crystals, biological crystals, and macromolecules are treated. This edition is complemented with recent data on many types of crystal structures - e.g., the structure of fullerenes, high-temperature superconductors, minerals, and liquid crystals.
Ferroelectric thin films continue to attract much attention due to their developing applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. The contributing authors are acknowledged experts in the field.
Crystals are the unacknowledged pillars of the world of modern technology. Today's technological developments depend critically on the availability of suitable single crystals, whether for lasers, semiconductors, magnetic devices, optical devices, superconductors or telecommunication. In spite of great technological advances in recent years, we are still at an early stage with respect to the growth of several important crystals such as diamond, silicon carbide, PZT and gallium nitride. This book covers all important aspects of crystal growth and growth techniques, together with relevant case studies. Particular emphasis is placed on new approaches designed to overcome the present limitations on crystal growth. The book will be essential reading for all scientists working on crystal growth.
Photonic Crystals are the newest types of optical material being
developed for commercial applications in industry. They are likely
to provide an exciting new tool for the manipulations of photons
and have received the attention of both academia and industry.
Roadmap on Photonic Crystals gives a detailed explanation of the
background of photonic crystals, the theories behind them,
numerical simulations, crystal structures, fabrication processes,
evaluation methods and proposed applications. This also includes a
roadmap addressing future development and applications.
The re-emergent field of quantitative electron crystallography is described by some of its most eminent practitioners. They describe the theoretical framework for electron scattering, specimen preparation, experimental techniques for optimum data collection, the methodology of structure analysis and refinement, and a range of applications to inorganic materials (including minerals), linear polymers, small organic molecules (including those used in nonlinear optical devices), incommensurately modulated structures (including superconductors), alloys, and integral membrane proteins. The connection between electron crystallography and X-ray crystallography is clearly defined, especially in the utilisation of the latest methods for direct determination of crystallographic phases, as well as the unique role of image analysis of high-resolution electron micrographs for phase determination. Even the aspect of multiple beam dynamic diffraction (once dreaded because it was thought to preclude ab initio analysis) is considered as a beneficial aid for symmetry determination as well as the elucidation of crystallographic phases, and as a criterion for monitoring the progress of structure refinement. Whereas other texts have hitherto preferentially dealt with the analysis of electron diffraction and image data from thin organic materials, this work discusses - with considerable optimism - the prospects of looking at harder' materials, composed of heavier atoms. Audience: Could be used with profit as a graduate-level course on electron crystallography. Researchers in the area will find a statement of current progress in the field.
The 9th edition of the World Directory of Crystallographers and of Other Scientists Employing Crystallographic Methods, which contains 7907 entries embracing 72 countries, differs considerably from the 8th edition, published in 1990. The content has been updated, and the methods used to acquire the information presented and to produce this new edition of the Directory have involved the latest advances in technology. The Directory is now also available as a regularly updated electronic database, accessible via e-mail, Telnet, Gopher, World-Wide Web, and Mosaic. Full details are given in an Appendix to the printed edition.
Liquid crystals, widely used in displays for electronic equipment and other applications, have highly unusual properties arising from the anisotropy of their molecules. It appears that some aspects of the fluid dynamics of liquid crystals, such as their viscosity, can be understood only by considering the role played by thermal fluctuations. In order to provide a theoretical framework for understanding the experimental results, the authors devote a large part of the book to a derivation of the nonlinear dynamic equations and to a discussion of linearized equations for the various types of liquid crystals. The diagrammatic and other techniques they use are of general use in condensed matter physics, and this exposition should thus be of interest to all condensed-matter theorists.
Volume 43 of Group III deals with crystallographic data of both intermetallic and classical inorganic compounds, updating the former Landolt-Bornstein volumes III/6 (Structure Data of Elements and Intermetallic Phases) and III/7 (Crystal Structure Data of Inorganic Compounds). It does not include compounds that contain C-H bonds. In contrast to the earlier edition, this volume presents the data in an improved, more modern arrangement, grouping known crystals by structure.
Market: Research scientists and students in materials science, physical metallurgy, and solid state physics. This detailed monograph presents the theory of reversible plasticity as a new direction of development in crystal physics. It features a unique integration of traditional concepts and new studies of high- temperature superconductors, plus in-depth analyses of various related phenomena. Among the topics discussed are elastic twinning (discovered by Dr. Garber), thermoelastic martensite transformation, superelasticity, shape memory effects, the domain structure of ferroelastics, and elastic aftereffect. Partial Contents: 1. Transformation of Dislocations. Dislocation Description of a Phase Transformation Front. 2. Dislocation Theory of Elastic Twinning. Twinning of Crystals: Principal Definitions. 3. Statics and Dynamics of Elastic Twinning. Discovery of Elastic Twinning. Verification of the Validity of the Static Theory in a Description of the Macroscopic Behavior of an Elastic Twin. 4. Thermoelastic Martensitic Transformation. Martensitic Transformation: a Diffusionless Process of Rebuilding the Crystal Lattice. 5. Superelasticity and the Shape Memory Effect. Main Characteristics of Superelasticity and Shape Memory Effects. 6. Reversible Plasticity of Ferroelastics. Ferroelastics: Main Definitions. 7. Investigation of Reversible Plasticity of Crystals by the Acoustic Emission Method. Emission of Sound by Moving Dislocations andTheir Pileups. Methods Used in Experimental Investigations of the Acoustic Emission Generated by a SingleTwin. Acoustic Emission Associated with Elastic Twinning. 8. Influence of Reversible Plasticity of Superconductors on Their Physical Properties. Reversible Changes in the Parameters of Traditional Superconductors under the Action of Elastic Stresses. Influence of Magnetic Fields on Reversible Changes in the Parameters
"Nature performs not hing vainly, and makes nothing unnecessary" Aristotle Interest in the passage of charged particles through crystals first appeared at the beginning of this century following experiments on x-ray diffraction in crystallattices, which provided the proof of an ordered distribution of atoms in a crystal. Stark [1] put forward the hypothesis that certain directions in a crystal should be relatively transparent to charged particles. These first ideas on the channeling of charged particles in crystals were forgotten but became topical again in the early 1960s when the channeling effect was rediscovered by computer simulation [2] and in experiments [3] that revealed anomalously long ion ranges in crystals. The orientational ef fects during the passage of charged particles through crystals have been found for a whole range of processes characterized by small impact parameters for collisions between particles and atoms: nuclear reactions, large-angle scatter ing, energy losses. Lindhard explained the channeling of charged particles in crystals [4]. The results of the numerous investigations into the channeling of low-energy (amounting to several MeV) charged particles in crystals have been summarized in several monographs and reviews [5~8l.
Solitons are a well-known and intriguing aspect of nonlinear behavior in a continuous system such as a fluid: a wave propagates through the medium without distortion. Liquid crystals are highly ordered systems without a rigid, long-range structure. Solitons in liquid crystals (sometimes referred to as "walls") have a wide variety of remarkable properties that are becoming important for practical applications such as electroluminescent display. This book, the first review of the subject to be published, contains not only surveys of the existing literature, but presents new results as well.
Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends to provide students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building bridges between optics, electromagnetism and solid-state physics. This book was written by six specialists of nanophotonics, and was coordinated by Jean-Michel Lourtioz, head of the Institut d'Electronique Fondamentale in Orsay and coordinator of the French Research Network in Nanophotonics."
Despite the tremendous advances in the techniques and equipment for
carrying out high-pressure crystallography, the application or
exploration of the high-pressure variable in detailed structural
studies remains rare. The chapters in this book provide a set of
lecture notes and supplementary material for a course on high
pressure crystallography. The material comprises state-of-the-art
reviews of high-pressure experiments using X-ray and neutron
diffraction techniques at synchrotron and neutron facilities and in
the laboratory, as well as complementary experimental high-pressure
techniques and theoretical methods for investigating matter at
elevated pressures. The materials studies range from elemental
solids and liquids to inorganic compounds, minerals, organic
compounds, clathrates and pharmaceutical compounds, to large
biological molecules such as proteins and viruses.
There have been many advances in x-ray crystallography since the
production of the third edition of this book, and the authors have
endeavoured to introduce a number of them into this new edition.
The overall plan of the book has been maintained because we believe
that it has been well received in the academic community, but
substantial revisions have been carried out and new material and
chapters added. In particular, we have extended the discussion of
the theory of x-ray diffraction and added new chapters on structure
determination from powder data, on macromolecular crystallography,
and on computational procedures in x-ray crystallography. We
consider that x-ray crystallography is a universal tool for
studying molecular structure, a view upheld by the pioneers in the
subject, notably W.H. & W.L. Bragg, J. D. Bernal, Dorothy
Hodgkin (nA(c)e Crowfoot), Kathleen Lonsdale (nA(c)e Yardley), and
Linus Pauling, so that the broadening of the scope of the text in
this way is fully justified. This edition is accompanied by a suite of computer programs on a compact disc. The programs enable the reader to participate fully in many of the aspects of x-ray crystallography discussed in the book. In particular, the program system XRAY* is interactive, and enables the reader to follow through, at the monitor screen, the computational techniques involved in single-crystal structure determination, albeit in two dimensions. Several sets of x-ray data areprovided for practice with this system.
Diese Arbeit enthiilt zwei grof3ere Fallstudien zur Beziehung zwischen theo- retischer Mathematik und Anwendungen im 19. Jahrhundert. Sie ist das Ergebnis eines mathematikhistorischen Forschungsprojekts am Mathemati- schen Fachbereich der Universitiit-Gesamthochschule Wuppertal und wurde dort als Habilitationsschrift vorgelegt. Ohne das wohlwollende Interesse von Herrn H. Scheid und den Kollegen der Abteilung fUr Didaktik der Mathema- tik ware das nicht moglich gewesen: Inhaltlich verdankt sie - direkt oder indirekt - vielen Beteiligten et- was. So wurde mein Interesse an den kristallographischen Symmetriekon- zepten, dem Thema der ersten Fallstudie, durch Anregungen und Hinweise von Herrn E. Brieskorn geweckt. Sowohl von seiner Seite als auch von Herrn J. J. Burckhardt stammen uberdies viele wert volle Hinweise zum Manuskript von Kapitel I. Herrn C. J. Scriba mochte ich fur seine die gesamte Arbeit betreffenden priizisen Anmerkungen danken und Herrn W. Borho ebenso fUr seine ubergreifenden Kommentare und Vorschlage. Beziiglich der in Kapitel II behandelten projektiven Methoden in der Baustatik des 19. Jahrhunderts gilt mein besonderer Dank den Herren K. -E. Kurrer und T. Hiinseroth fUr ihre zum Teil sehr detaillierten Anmerkungen aus dem Blickwinkel der Geschichte der Bauwissenschaften. Schliefilich geht mein Dank an alle nicht namentlich Erwiihnten, die in Gesprachen, technisch oder auch anderweitig zur Fertig- stellung dieser Arbeit beigetragen haben. Fur die vorliegende Publikation habe ich einen Anhang mit einer Skizze von in unserem Zusammenhang besonders wichtig erscheinenden Aspekten der Theorie der kristallographischen Raumgruppen hinzugefUgt. Ich hoffe, daB er zum Verstiindnis des mathematischen Hintergrunds der historischen Arbeiten des ersten Kapitels beitragt.
This volume comprises papers presented at the 40th Erice Course "From Molecules to Medicine: Structure of Biological Macromolecules and Its Relevance in Combating New Diseases and Bioterrorism," May 29 to June 8, 2008. The papers span the breadth of material presented, which emp- size the practical aspects of modern macromolecular crystallography and its applications to medicine. Topics addressed span from the selection of targets, through to structure determination, interpretation and exploitation. A particular theme that emerges is the dependence of modern structural science on multiple experimental and computational techniques. It is both the development of these techniques and their integration that will take us forward in the future. The NATO ASI directors worked alongside, and offer deep gratitude to Prof. Sir Tom Blundell, Director of the International School of Crystal- graphy, Dr Colin Groom, Dr Neera Borkakoti, Dr John Irwin and Prof. Lodovico Riva di Sanseverino, who were in turn supported by a number of local facilitators. The course was financed by NATO as an Advanced Study Institute. Additional support was given by the European Crystallographic Association, the International Union of Biochemistry and Molecular Biology, the Int- national Union of Crystallography, the University of Bologna, AstraZeneca, Roche, Merck & Co., Boehringer Ingelheim, Bruker Corporation, Douglas Instruments, Informa UK, the Department of Pharmaceutical Chemistry, TTP Lab Tech, University of California at San Francisco. Joel L. Sussman and Paola Spadon
From the reviews: " ...] an excellent reference book. I have no doubt it will become a much-thumbed resource for students and researchers in mineralogy and crystallography." Geological Magazine |
You may like...
Manufacturing Exports from Indian States…
Jaya Prakash Pradhan, Keshab Das
Hardcover
Models, Algorithms, and Technologies for…
Boris I. Goldengorin, Valery A. Kalyagin, …
Hardcover
R4,027
Discovery Miles 40 270
Ecosystem Ecology and Geochemistry of…
Felipe Garcia-Oliva, James Elser, …
Hardcover
R2,653
Discovery Miles 26 530
|