![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Crystallography
This volume draws on the expertise of leaders in the field of macromolecular crystallography to illuminate the dramatic developments that are accelerating progress in structural biology. Their contributions span the range of techniques from crystallization through data collection, structure solution and analysis. The book shows how modern high-throughput methods are contributing to a deeper understanding of medical problems.
There have been several recent breakthroughs in the supramolecular domain: larger molecular components are being synthesized; 2D layers involving multiple recognition sites; crystals with intricate building blocks are being designed; more components are being used in assembly and self-assembly "algorithms" (some having molecular weights as high as 15,000); and there is an increasing versatility in applications. The difficulty in characterizing and obtaining structural information on such large assemblies has increased to such a level that no single technique is now adequate. Various methods have now been upgraded and are being combined: X-ray diffraction (structures with hundreds of independent atoms), NMR, AFM/STM (manipulation of a single molecule), FAB/MS, time-resolved techniques up to the picosecond range, new computational approaches, and others. The present book aims to shed light on the most recent developments in both the synthesis of novel assemblies and on current methods for their characterization.
Volume IA Handbook of Crystal Growth, 2nd Edition (Fundamentals: Thermodynamics and Kinetics) Volume IA addresses the present status of crystal growth science, and provides scientific tools for the following volumes: Volume II (Bulk Crystal Growth) and III (Thin Film Growth and Epitaxy). Volume IA highlights thermodynamics and kinetics. After historical introduction of the crystal growth, phase equilibria, defect thermodynamics, stoichiometry, and shape of crystal and structure of melt are described. Then, the most fundamental and basic aspects of crystal growth are presented, along with the theories of nucleation and growth kinetics. In addition, the simulations of crystal growth by Monte Carlo, ab initio-based approach and colloidal assembly are thoroughly investigated. Volume IB Handbook of Crystal Growth, 2nd Edition (Fundamentals: Transport and Stability) Volume IB discusses pattern formation, a typical problem in crystal growth. In addition, an introduction to morphological stability is given and the phase-field model is explained with comparison to experiments. The field of nanocrystal growth is rapidly expanding and here the growth from vapor is presented as an example. For the advancement of life science, the crystal growth of protein and other biological molecules is indispensable and biological crystallization in nature gives many hints for their crystal growth. Another subject discussed is pharmaceutical crystal growth. To understand the crystal growth, in situ observation is extremely powerful. The observation techniques are demonstrated.
Molecular chirality is one of the fundamental aspects of chemistry. Chirality properties of molecules have implications in a wide variety of subjects, ranging from the basic quantum mechanical properties of simple of a few atoms to molecular optical activity, asymmetric synthesis, systems and the folding pattern of proteins. Chirality, in both the geometrical and the topological sense, has also been the subject of investigations in various branches of mathematics. In particular, new developments in a branch of topology, called knot theory, as well as in various branches of discrete mathematics, have led to a novel perspective on the topological aspects of molecular chirality. Some of the mathematical advances have already found applications to the interpretation of new concepts in theoretical chemistry and mathematical chemistry, as well as to novel synthetic approaches leading to new molecules of exceptional structural properties. Some of the new developments in molecular chirality have been truly fundamental to the theoretical understanding and to the actual practice of many aspects of chemistry. The progress in this field has been very rapid, even accelerating in recent years, and a review appears more than justified. This book offers a selection of subjects covering some of the latest developments. Our primary aim is to clarify some of the basic concepts that are the most prone to misinterpretation and to provide brief introductions to some of those subjects that are expected to have further, important contributions to our understanding of molecular properties and chemical reactivity.
Vol 2A: Basic Technologies Handbook of Crystal Growth, Second Edition Volume IIA (Basic Technologies) presents basic growth technologies and modern crystal cutting methods. Particularly, the methodical fundamentals and development of technology in the field of bulk crystallization on both industrial and research scales are explored. After an introductory chapter on the formation of minerals, ruling historically the basic crystal formation parameters, advanced basic technologies from melt, solution, and vapour being applied for research and production of the today most important materials, like silicon, semiconductor compounds and oxides are presented in detail. The interdisciplinary and general importance of crystal growth for human live are illustrated. Vol 2B: Growth Mechanisms and Dynamics Handbook of Crystal Growth, Second Edition Volume IIB (Growth Mechanisms and Dynamics) deals with characteristic mechanisms and dynamics accompanying each bulk crystal growth method discussed in Volume IIA. Before the atoms or molecules pass over from a position in the fluid medium (gas, melt or solution) to their place in the crystalline face they must be transported in the fluid over macroscopic distances by diffusion, buoyancy-driven convection, surface-tension-driven convection, and forced convection (rotation, acceleration, vibration, magnetic mixing). Further, the heat of fusion and the part carried by the species on their way to the crystal by conductive and convective transport must be dissipated in the solid phase by well-organized thermal conduction and radiation to maintain a stable propagating interface. Additionally, segregation and capillary phenomena play a decisional role for chemical composition and crystal shaping, respectively. Today, the increase of high-quality crystal yield, its size enlargement and reproducibility are imperative conditions to match the strong economy.
Volume IIIA Basic Techniques Handbook of Crystal Growth, Second Edition Volume IIIA (Basic Techniques), edited by chemical and biological engineering expert Thomas F. Kuech, presents the underpinning science and technology associated with epitaxial growth as well as highlighting many of the chief and burgeoning areas for epitaxial growth. Volume IIIA focuses on major growth techniques which are used both in the scientific investigation of crystal growth processes and commercial development of advanced epitaxial structures. Techniques based on vacuum deposition, vapor phase epitaxy, and liquid and solid phase epitaxy are presented along with new techniques for the development of three-dimensional nano-and micro-structures. Volume IIIB Materials, Processes, and Technology Handbook of Crystal Growth, Second Edition Volume IIIB (Materials, Processes, and Technology), edited by chemical and biological engineering expert Thomas F. Kuech, describes both specific techniques for epitaxial growth as well as an array of materials-specific growth processes. The volume begins by presenting variations on epitaxial growth process where the kinetic processes are used to develop new types of materials at low temperatures. Optical and physical characterizations of epitaxial films are discussed for both in situ and exit to characterization of epitaxial materials. The remainder of the volume presents both the epitaxial growth processes associated with key technology materials as well as unique structures such as monolayer and two dimensional materials.
The monograph "Shaped Crystal Growth" by V. A. Tatarchenko is the first systematic of the macroscopic crystallization theory. The theory is based on the stable statement growth conception, which means that self-stabilization is present in the system, with growth parameter deviations occurring under the action of external perturbations attenuating with time. The crystallization rate is one of the parameters responsible for crystal defect formation. Steady-state crystal growth means that crystallization rate internal stabilization is present, thus allowing more perfect crystals to grow. Most important is the fact that the crystal shape (an easily observed parameter) is one of the stable-growth characteristics when growing crystals without any contact with the crucible walls. This means that constant-cross-section crystal growth is to a certain extent evidence of crystallization process stability. The principles of the stable crystal growth theory were developed by the author of the monograph in the early 1970s. Due to the efforts over the past 20 years of V. A. Tatarchenko, his disciples (V. A. Borodin, S. K. Brantov, E. A. Brener, G. I. Romanova, G. A. Satunkin et al) and his followers (B. L. Timan, 0. V. Kolotiy et al) the theory has been completed, which is demonstrated by this monograph. The characteristic feature of the theory is its trend towards solving practical problems that occur in the process of crystal growth."
A large range of symmetries in art is presented through clear and aesthetically outstanding examples of historical ornaments. Compendious comments illustrate the selected photographic material by addressing the interested and specialist reader alike. Contents: Introduction Fundamental categories The convenient start: Plane groups of symmetry Intertwined patterns: Layer groups of symmetry Two-colored periodic ornamentation Polychromatic patterns Beyond 2D groups: Hypersymmetry, superstructures, two symmetries in one pattern, the "order-disorder" patterns, homothety and similarity, inversion and nonlinear patterns Quasiperiodic patterns Fractals and fractal character Style and symmetry - symmetry and style References Index
"Highlights in Mineralogical Crystallography" presents a collection of review articles with the common topic: structural properties of minerals and synthetic analogues. It is a valuable resource for mineralogists, materials scientists, crystallographers, and earth scientists. This book includes: An introduction to the RRUFF database for structural, spectroscopic, and chemical mineral identification. A systematic evaluation of structural complexity of minerals. ab initio computer modelling of mineral surfaces. Natural quasicrystals of meteoritic origin. The potential role of terrestrial ringwoodite on the water content of the Earth's mantle. Structural characterization of nanocrystalline bio-related minerals by electron-diffraction tomography. The uniqueness of mayenite-type compounds as minerals and high-tech ceramics.
Crystallography is an interdisciplinary science covering a wide
area, from biology to earth sciences, mathematics and materials
science. Its role is growing, owing to the contribution
crystallography can offer to the understanding of such diverse
fields as biological structures, high-temperature superconductors,
mineral properties, and phase transitions. The book describes both
the theoretical bases and applications of different areas
interacting with crystallography. As with the first and second
editions, it is organized as a collection of chapters written by
recognized specialists, with all contributions being harmonized
into a unified whole. The main text is devoted to the presentation
of basics; the appendices deal with specialist aspects. In this
third edition topics have been updated so as to document the
present state of the art: emphasis is placed upon areas of current
research.
Clearly presents the state of the art and future trends in the research of the biodegradable polymers in the context of circular economy Covers entire value chain and life cycle of biopolymers, considering different types of polymers Clarifies the life safety of (bio)degradable polymeric materials Presents novel opportunities and ideas for developing or improving technologies Determines the course of degradation during prediction study
Optical fibres have for almost three decades been fabricated from solid glass. It was, therefore, a radical change that took place, when researchers in the late 90s started to fabricate hair-thin optical fibres with numerous microscopic air holes running along the length of the fibres. These microstructured fibres did not only mark the introduction of tailored materials with unique spectral properties in fibre optics, but it also opened the perspective of the applicability of photonic bandgap materials at optical wavelengths. In this respect, a completely new guiding mechanism was demonstrated, and a revolution in fibre optics had started. Photonic Crystal Fibres describes the fundamental properties of these new optical waveguides, outlines how they are fabricated, and how they are treated from a theoretical and numerical point of view. A detailed description of the different classes of photonic crystal fibres is given, and a spectrum of different applications and new fibre types are presented. Photonic Crystal Fibres describes the fundamental properties of the optical waveguides known under the terms of photonic crystal fibres, microstructured fibres, or holey fibres. treated from a theoretical and numerical point of view. The book presents a detailed description of the different classes of photonic crystal and photonic bandgap fibres, and it broadens out a spectrum of novel applications and new fibre types.
In recent years, it has become apparent that knowing the average atomic structure of materials is insufficient to understand their properties. Diffuse scattering in addition to the Bragg scattering holds the key to learning about defects in materials, the topic of many recent books. What has been missing is a detailed step-by-step guide on how to simulate disordered materials. The DISCUS cook book fills this need covering simple topics such as building a computer crystal to complex topics such as domain structures, stacking faults or using advanced refinement techniques to adjust parameters on a disordered model. The book contains a CD-ROM with all files needed to recreate every example given using the program DISCUS. The reader is free to follow the principles behind simulating disordered materials or to get down into the details and run or modify the given examples.
Intermetallic compounds are in the focus of solid-state research for a wide range of future applications, e.g. in heterogeneous catalysis, for thermoelectric generators, and basic research of quantum critical effects. A comprehensive overview is given on various crystal growth techniques that are particularly adopted to intermetallic phases. Experienced authors from leading institutes give detailed descriptions of the specific problems in crystal growth of intermetallic compounds and approaches to solve them.
Photonic Crystals: The Road from Theory to Practice explores the theoretical road leading to the practical application of photonic band gaps. These new optimal devices are based on symmetry and resonance and the benefits and limitations of hybrid "two dimensional" slab systems in three dimensions. The book also explains that they also signify a return to the ideal of an omnidirectional band gap in a structure inspired by and emulating the simplicity of two dimensions. Finally, the book takes a look at computational methods to solve the mathematical problems that underlie all undertakings in this field. Photonic Crystals: The Road from Theory to Practice should rapidly bring the optical professional and engineer up to speed on this intersection of electromagnetism and solid-state physics. It will also provide an excellent addition to any graduate course in optics.
The accurate determination of the structure of molecular systems provides information about the consequences of weak interactions both within and between molecules. These consequences impact the properties of the materials and the behaviour in interactions with other substances. The book presents modern experimental and computational techniques for the determination of molecular structure. It also highlights applications ranging from the simplest molecules to DNA and industrially significant materials. Readership Graduate students and researchers in structural chemistry, computational chemistry, molecular spectroscopy, crystallography, supramolecular chemistry, solid state chemistry and physics, and materials science.
Exhaustively covers nanotechnology, metal oxide- carbon nanocomposites and their application in soil, water, and air treatments Explores pollutants Nano-sensing and their Remediation towards Environmental Safety Includes economics analysis and environmental aspects of metal oxide materials Describes why properties of oxide-carbon based nanomaterials useful for environmental applications Discusses current cases studies of remediation technologies
Provides description of functional foams, their manufacturing methods, properties, and applications Covers various blowing agents, greener methods for foaming, and emerging applicability Illustrates comparative information regarding polymeric foams and recent developments with polymer nanocomposite foams Includes applications in mechanical, civil, biomedical, food packaging, electronics, health care industry, and acoustics fields Reviews elastomeric foams and their nanocomposite derivatives
Discusses modeling of Metal Matrix Composite (MMC) and fabrication of Hybrid MMCs Covers advanced characterization studies of nanocomposites Reviews high temperature applications and cobalt -nickel combination materials Provides inputs regarding optimal selection of percentage of reinforcement materials for MMCs fabrication based on industrial requirements Focusses on aerospace and automotive industries
|
![]() ![]() You may like...
Career Counselling And Guidance In The…
Melinda Coetzee, Herman Roythorne-Jacobs, …
Paperback
Work and Sleep - Research Insights for…
Julian Barling, Christopher M. Barnes, …
Hardcover
R2,732
Discovery Miles 27 320
Human Resource Management In South…
Surette Warnich, Elbert, …
Paperback
![]() R617 Discovery Miles 6 170
Smart Brevity - The Power of Saying More…
Jim Vandehei, Mike Allen, …
Hardcover
|