![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Crystallography
This text focuses on the practical aspects of crystal structure
analysis, and provides the necessary conceptual framework for
understanding and applying the technique. By choosing an approach
that does not put too much emphasis on the mathematics involved,
the book gives practical advice on topics such as growing crystals,
solving and refining structures, and understanding and using the
results. The technique described is a core experimental method in
modern structural chemistry, and plays an ever more important role
in the careers of graduate students, postdoctoral and academic
staff in chemistry, and final-year undergraduates.
This book is the first book dealing with structural crystallography of inorganic oxysalts in general. A special emphasis is placed upon structural topology and methods of its description. The latter include graph theory, nets, 2-D and 3-D tilings, polyhedra, etc. The structures considered range from minerals to organically templated oxysalts, for all of which this book provides a unified approach to structure interpretation and classification. Most of the structures have been analysed from the proposed viewpoint for the first time and it has been shown that they possess the same topological genealogy and relationships, sometimes despite their obvious chemical differences. In order to expand the range of oxysalts considered, the book offers not only traditional schemes but also alternative approaches such as anion topologis, anion-centered polyhedra and cation arrays. As such, this book can be considered as a comprehensive introduction into the amazingly complex and diverse world of inorganic oxysalts.
In recent years, it has become apparent that knowing the average atomic structure of materials is insufficient to understand their properties. Diffuse scattering in addition to the Bragg scattering holds the key to learning about defects in materials, the topic of many recent books. What has been missing is a detailed step-by-step guide on how to simulate disordered materials. The DISCUS cook book fills this need covering simple topics such as building a computer crystal to complex topics such as domain structures, stacking faults or using advanced refinement techniques to adjust parameters on a disordered model. The book contains a CD-ROM with all files needed to recreate every example given using the program DISCUS. The reader is free to follow the principles behind simulating disordered materials or to get down into the details and run or modify the given examples.
Photonic Crystals: The Road from Theory to Practice explores the theoretical road leading to the practical application of photonic band gaps. These new optimal devices are based on symmetry and resonance and the benefits and limitations of hybrid "two dimensional" slab systems in three dimensions. The book also explains that they also signify a return to the ideal of an omnidirectional band gap in a structure inspired by and emulating the simplicity of two dimensions. Finally, the book takes a look at computational methods to solve the mathematical problems that underlie all undertakings in this field. Photonic Crystals: The Road from Theory to Practice should rapidly bring the optical professional and engineer up to speed on this intersection of electromagnetism and solid-state physics. It will also provide an excellent addition to any graduate course in optics.
The accurate determination of the structure of molecular systems provides information about the consequences of weak interactions both within and between molecules. These consequences impact the properties of the materials and the behaviour in interactions with other substances. The book presents modern experimental and computational techniques for the determination of molecular structure. It also highlights applications ranging from the simplest molecules to DNA and industrially significant materials. Readership Graduate students and researchers in structural chemistry, computational chemistry, molecular spectroscopy, crystallography, supramolecular chemistry, solid state chemistry and physics, and materials science.
Macromolecular Crystallography is the study of macromolecules (proteins and nucleic acids) using X-ray crystallographic techniques in order to determine their molecular structure. The knowledge of accurate molecular structures is a pre-requisite for rational drug design, and for structure-based function studies to aid the development of effective therapeutic agents and drugs. The successful determination of the complete genome (genetic sequence) of several species (including humans) has recently directed scientific attention towards identifying the structure and function of the complete complement of proteins that make up that species; a new and rapidly growing field of study called 'structural genomics'. There are now several important and well-funded global initiatives in operation to identify all of the proteins of key model species. One of the main requirements for these initiatives is a high-throughput crystallization facility to speed-up the protein identification process. The extent to which these technologies have advanced, calls for an updated review of current crystallographic theory and practice. This practical reference book features the latest conventional and high-throughput methods, and includes contributions from a team of internationally recognized leaders and experts. It will be of relevance and use to graduate students, research scientists and professionals currently working in the field of conventional and high-throughput macromolecular crystallography.
This concise book for chemists, material scientists, and physicists who deal with description of crystalline matter and the determination of its structure, and would like to gain more understanding of the principles involved. The main purpose of the book is to introduce the reader to principles of crystallographic symmetry, to discuss some traditional, as well as modern, experimental techniques, to formulate the phase problem of crystallographic symmetry, to discus some traditional, as well as modern, experimental techniques, to formulate the phase problem of crystallography, and present in some detail the methods for its indirect and direct solution which are indispensable for further work. The book also contains discussions of structure-factor statistics, or value for resolving space-group ambiguities, and atomic displacement parameters, which form an inseparable part of the structure. A discussion of the refinement of structural parameters, conventional, constrained and restrained, concludes the book. Derivations are as far as possible, self contained and wherever mathematical detail might disrupt the line of reasoning the reader is referred to on of four appendices present in the book. The book is of course valuable for students of crystallography at a graduate and upper undergraduate level. No previous course on crystallography is a prerequisite for graduates in the above fields.
Exhaustively covers nanotechnology, metal oxide- carbon nanocomposites and their application in soil, water, and air treatments Explores pollutants Nano-sensing and their Remediation towards Environmental Safety Includes economics analysis and environmental aspects of metal oxide materials Describes why properties of oxide-carbon based nanomaterials useful for environmental applications Discusses current cases studies of remediation technologies
This book shows how the fundamentals of electron paramagnetic resonance (EPR) spectroscopy are practically implemented and illustrates the diversity of current applications. The technique is used at various levels, and applications are presented in order of increasing difficulty, with reference to theoretically obtained results. This book features a diverse array of application examples, from fields such as ionizing radiation dosimetry, neurodegenerative diseases, structural transitions in proteins, and the origins of terrestrial life. The final chapter of this book highlights the principles and applications of the technique of ferromagnetic resonance spectroscopy, followed by a brief introduction to advanced EPR techniques such as electron spin echo envelope modulation (ESEEM), hyperfine sub-level correlation (HYSCORE), pulsed electron-electron double resonance (PELDOR), and continuous wave electron nuclear double resonance (ENDOR) experiments.
Clearly presents the state of the art and future trends in the research of the biodegradable polymers in the context of circular economy Covers entire value chain and life cycle of biopolymers, considering different types of polymers Clarifies the life safety of (bio)degradable polymeric materials Presents novel opportunities and ideas for developing or improving technologies Determines the course of degradation during prediction study
Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.
This book features the essential material for any graduate or advanced undergraduate course covering solid-state electrochemistry. It provides the reader with fundamental course notes and numerous solved exercises, making it an invaluable guide and compendium for students of the subject. The book places particular emphasis on enhancing the reader's expertise and comprehension of thermodynamics, the Kroeger-Vink notation, the variation in stoichiometry in ionic compounds, and of the different types of electrochemical measurements together with their technological applications. Containing almost 100 illustrations, a glossary and a bibliography, the book is particularly useful for Master and PhD students, industry engineers, university instructors, and researchers working with inorganic solids in general.
LCs are self-organized anisotropic fluids that are thermodynamically located between the isotropic liquid and the crystalline phase, exhibiting the fluidity of liquids as well as the long-range lattice order that can only be found in crystalline solids. The addition of nanomaterials to a LC material produces a composite or colloidal dispersion and results into a revolutionary change in their applications. This book will discuss the remarkable performances of nano-particle aided liquid crystals in metamaterials, photonics, functionalized polymer fibres, sensing, and medical diagnostics.
Discusses modeling of Metal Matrix Composite (MMC) and fabrication of Hybrid MMCs Covers advanced characterization studies of nanocomposites Reviews high temperature applications and cobalt -nickel combination materials Provides inputs regarding optimal selection of percentage of reinforcement materials for MMCs fabrication based on industrial requirements Focusses on aerospace and automotive industries
Provides description of functional foams, their manufacturing methods, properties, and applications Covers various blowing agents, greener methods for foaming, and emerging applicability Illustrates comparative information regarding polymeric foams and recent developments with polymer nanocomposite foams Includes applications in mechanical, civil, biomedical, food packaging, electronics, health care industry, and acoustics fields Reviews elastomeric foams and their nanocomposite derivatives
The mathematical modelling of changing structures in materials is
of increasing importance to industry where applications of the
theory are found in subjects as diverse as aerospace and medicine.
This book deals with aspects of the nonlinear dynamics of
deformable ordered solids (known as
This systematic and comprehensive monograph is devoted to parametric X-ray radiation (PXR). This radiation is generated by the motion of electrons inside a crystal, whereby the emitted photons are diffracted by the crystal and the radiation intensity critically depends on the parameters of the crystal structure. Nowadays PXR is the subject of numerous theoretical and experimental studies throughout the world. The first part of the book is a theoretical treatment of PXR, which includes a new approach to describe the radiation process in crystals. The second part is a survey of PXR experimental results and the possible applications of PXR as a tool for crystal structure analysis and a source of tunable X-ray radiation.
This book bridges the gap between theoretical concepts and their implementations, especially for the high-performance structures/components related to advanced composite materials. This work focuses on the prediction of various structural responses such as deformations, natural frequencies etc. of advanced composites under complex environments and/or loading conditions. In addition, it discusses micro-mechanical material modeling of various advanced composite materials that involve different structures ranging from basic to advanced, such as beams, flat and curved panels, shells, skewed, corrugated, and other materials, as well as various solution techniques via analytical, semi-analytical, and numerical approaches. This book: Covers micro-mechanical material modeling of advanced composite materials Describes constitutive models of different composite materials and kinematic models of different structural configuration Discusses pertinent analytical, semi-analytical, and numerical techniques Focusses on structural responses relating to deformations, natural frequencies, and critical loads under complex environments Presents actual demonstrations of theoretical concepts as applied to real examples using Ansys APDL scripts This book is aimed at researchers, professionals, and graduate students in mechanical engineering, material science, material engineering, structural engineering, aerospace engineering, and composite materials.
Direct methods are, at present, applied to a large variety of cases: X-ray, neutron or electron data; single crystal and powder data; small molecules and macromolecules. While direct methods solved in practice the phase problem for small molecules, their application to macromolecules is recent and still undergoing strong development. The fundamentals of the methods are described: in particular it is shown how the methods can be optimized for powder, neutron or electron data, and how they can be integrated with isomorphous replacement, molecular replacement and anomalous dispersion techniques. Maximum Entropy methods are also described and discussed. Sets of test structures are used to verify, throughout the various chapters, the mathematical techniques there described and to provide practical examples of applications. This book will appeal to a wide variety of readers - offering both a comprehensive description of direct methods in crystallography and an invaluable reference tool. The first three chapters can be considered as an introduction to the field, with sufficient material to constitute a university course and for allowing the expert use of most direct methods programs. Subsequent chapters are aimed at graduate students and working crystallographers. Basic results are described and discussed in the main body of the text, while the appendices compliment these with in depth mathematical details. The quoted literature is extremely wide and the interested reader can find suggestions for future work and further reading throughout the book.
Crystals are everywhere, from natural crystals (minerals) through the semiconductors and magnetic materials in electronic devices and computers or piezoelectric resonators at the heart of our quartz watches to electro-optical devices. Understanding them in depth is essential both for pure research and for their applications. This book provides a clear, thorough presentation of their symmetry, both at the microscopic space-group level and the macroscopic point-group level. The implications of the symmetry of crystals for their physical properties are then presented, together with their mathematical description in terms of tensors. The conditions on the symmetry of a crystal for a given property to exist then become clear, as does the symmetry of the property. The geometrical representation of tensor quantities or properties is presented, and its use in determining important relationships emphasized. An original feature of this book is that most chapters include exercises with complete solutions. This allows readers to test and improve their understanding of the material. The intended readership includes undergraduate and graduate students in materials science and materials-related aspects of electrical and optical engineering; researchers involved in the investigation of the physical properties of crystals and the design of applications based on crystal properties such as piezoelectricity, electro-optics, optical activity and all those involved in the characterization of the structural properties of materials.
Covers the synthesis and properties of polymer nanocomposites for varied usage Explains role of different types of nanofillers in polymeric systems for developing supercapacitor Highlights theory, modelling and simulation of polymeric supercapacitors Gives an illustrative overview of the multiple applications of polymers and their nanocomposites Includes graphene, CNT, nanoparticle, carbon and nano-cellulose based supercapacitors |
You may like...
WriteWell 9: Fluency, Year 4, Ages 8-9
Schofield & Sims, Carol Matchett
Paperback
R157
Discovery Miles 1 570
Myxomycetes - Biology, Systematics…
Carlos Rojas, Steven L. Stephenson
Paperback
R3,052
Discovery Miles 30 520
Emerging Technologies for Sustainable…
Gnaneswar Gnaneswar Gude
Paperback
Extremisms In Africa
Alain Tschudin, Stephen Buchanan-Clarke, …
Paperback
(1)
Into A Raging Sea - Great South African…
Tony Weaver, Andrew Ingram
Paperback
(2)R330 Discovery Miles 3 300
|