![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Crystallography
This new book offers research and updates on the chemical process in liquid and solid phases. The collection of topics in this book reflect the diversity of recent advances in chemical processes with a broad perspective that will be useful to scientists as well as graduate students and engineers. The book will help to fill the gap between theory and practice in industry.
Quartz, zeolites, gemstones, perovskite type oxides, ferrite, carbon allotropes, complex coordinated compounds and many more -- all products now being produced using hydrothermal technology. Handbook of Hydrothermal Technology brings together the latest techniques in this rapidly advancing field in one exceptionally useful, long-needed volume. The handbook provides a single source for understanding how aqueous solvents or mineralizers work under temperature and pressure to dissolve and recrystallize normally insoluble materials, and decompose or recycle any waste material. The result, as the authors show in the book, is technologically the most efficient method in crystal growth, materials processing, and waste treatment. The book gives scientists and technologists an overview of the entire subject including: A Evolution of the technology from geology to widespread industrial use. A Descriptions of equipment used in the process and how it works. A Problems involved with the growth of crystals, processing of technological materials, environmental and safety issues. A Analysis of the direction of today's technology. In addition, readers get a close look at the hydrothermal
synthesis of zeolites, fluorides, sulfides, tungstates, and
molybdates, as well as native elements and simple oxides. Delving
into the commercial production of various types, the authors
clarify the effects of temperature, pressure, solvents, and various
other chemical components on the hydrothermal processes.
In the last 20 years the study of nonlinear nonequilibrium phenomena in spa tially extended systems, with particular emphasis on pattern-forming phenomena, has been one of the very active areas in physics, exhibiting interesting ramifi cations into other sciences. During this time the study of the "classic" systems, like Rayleigh-Benard convection and Taylor vortex flow in simple fluids, has also been supplemented by the study of more complex systems. Here liquid crystals have played, and are still playing, a major role. One might say that liquid crystals provide just the right amount and right kind of complexity. They are full of non linearities and give rise to new symmetry classes, which are sometimes actually simpler to deal with qualitatively, but they still allow a quantitative description of experiments in many cases. In fact one of the attractions of the field is the close contact between experimentalists and theorists. Hydrodynamic instabilities in liquid crystals had already experienced a period of intense study in the late 1960s and early 1970s, but at that time neither the ex perimental and theoretical tools nor the concepts had been developed sufficiently far to address the questions that have since been found to be of particular interest. The renewed interest is also evidenced by the fact that a new series of workshops has evolved. The first one took place in 1989 in Bayreuth and united participants from almost all groups working in pattern formation in liquid crystals."
Metallic Glass-Based Nanocomposites: Molecular Dynamics Study of Properties provides readers with an overview of the most commonly used tools for MD simulation of metallic glass composites and provides all the basic steps necessary for simulating any material on Materials Studio. After reading this book, readers will be able to model their own problems on this tool for predicting the properties of metallic glass composites. This book provides an introduction to metallic glasses with definitions and classifications, provides detailed explanations of various types of composites, reinforcements and matrices, and explores the basic mechanisms of reinforcement-MG interaction during mechanical loading. It explains various models for calculating the thermal conductivity of metallic glass composites and provides examples of molecular dynamics simulations. Aimed at students and researchers, this book caters to the needs of those working in the field of molecular dynamics (MD) simulation of metallic glass composites.
The book addresses the most recent developments in structural and functional proteomics underlying the recent contributions given in these areas by our laboratory to the instrumentations, the methods and the procedures as mutuated from the nanoscale sciences and technologies. These developments introduced in the last few years make now possible protein massive identification (mass spectrometry and biomolecular arrays down to nanoamounts) and protein structural characterization in solution and in crystals down to the atomic scale to an extent and to a degree so far unmatched. Emphasis is placed in the growth by nanobiofilm template of protein crystals of any type and size from millimeter to micron, leading in combination with microfocus synchrotron technology and atomic force microscopy to the definition of a new field called nanocrystallography. The few useful examples being shown, concerning yet structurally unsolved proteins, point this very promising approach nanotechnology-based in structural proteomics using highly focused X-rays. This has not to be confused with the important study of nanocrystals, both organic and inorganic, and novel diamond like nanocomposite materials and devices having 3D protein crystals as matrices to be equilibrated with nanoparticles/gold/silver to be utilized in the most diversified electronic applications here also summarized. vii Acknowledgments We are particularly grateful to Giuseppe Zanotti at the University of Padova for his fundamental collaboration during all the crystallographic studies.
As the title suggests, this unique book describes the synthesis, structure and properties of the polyamide family known by the common term n-nylon. Each nylon from n=1 to n=22 is discussed in detail with descriptions of the preparation of monomers, various synthetic approaches to the polymerization, structure and crystallisation of polymers and both their fundamental properties and important technological properties. It treats the structure and properties from two perspectives, namely the effect of the aliphatic chain length between amide groups and the effects of the rigidity or flexibility of the main chain Whilst intended as a reference work for all polymer scientists, in academia and industry, working with nylons, polyamide and condensation polymers, n-Nylons will also be appreciated by post-graduate students of polymer science and engineering. Each self-contained chapter can be read individually and is extensively referenced.
Sputtered Thin Films: Theory and Fractal Descriptions provides an overview of sputtered thin films and demystifies the concept of fractal theory in analysis of sputtered thin films. It simplifies the use of fractal tools in studying the growth and properties of thin films during sputtering processes. Part 1 of the book describes the basics and theory of thin film sputtering and fractals. Part 2 consists of examples illustrating specific descriptions of thin films using fractal methods. Discusses thin film growth, structure, and properties Covers fractal theory Presents methods of fractal measurements Offers typical examples of fractal descriptions of thin films grown via magnetron sputtering processes Describes application of fractal theory in prediction of thin film growth and properties This reference book is aimed at engineers and scientists working across a variety of disciplines including materials science and metallurgy as well as mechanical, manufacturing, electrical, and biomedical engineering.
Scanning Transmission Electron Microscopy is focused on discussing the latest approaches in the recording of high-fidelity quantitative annular dark-field (ADF) data. It showcases the application of machine learning in electron microscopy and the latest advancements in image processing and data interpretation for materials notoriously difficult to analyze using scanning transmission electron microscopy (STEM). It also highlights strategies to record and interpret large electron diffraction datasets for the analysis of nanostructures. This book: Discusses existing approaches for experimental design in the recording of high-fidelity quantitative ADF data Presents the most common types of scintillator-photomultiplier ADF detectors, along with their strengths and weaknesses. Proposes strategies to minimize the introduction of errors from these detectors and avenues for dealing with residual errors Discusses the practice of reliable multiframe imaging, along with the benefits and new experimental opportunities it presents in electron dose or dose-rate management Focuses on supervised and unsupervised machine learning for electron microscopy Discusses open data formats, community-driven software, and data repositories Proposes methods to process information at both global and local scales, and discusses avenues to improve the storage, transfer, analysis, and interpretation of multidimensional datasets Provides the spectrum of possibilities to study materials at the resolution limit by means of new developments in instrumentation Recommends methods for quantitative structural characterization of sensitive nanomaterials using electron diffraction techniques and describes strategies to collect electron diffraction patterns for such materials This book helps academics, researchers, and industry professionals in materials science, chemistry, physics, and related fields to understand and apply computer-science-derived analysis methods to solve problems regarding data analysis and interpretation of materials properties.
Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals provides an account of new and established results spanning three decades of research into the problems of anchoring energy and adsorption phenomena in liquid crystals. The book contains a detailed discussion of the origin and possible sources of anchoring energy in nematic liquid crystals, emphasizing the dielectric contribution to the anchoring energy in particular. Beginning with fundamental surface and anchoring properties of liquid crystals and the definition of the nematic phase, the authors explain how selective ion adsorption, dielectric energy density, thickness dependence, and bias voltage dependence influence the uniform alignment of liquid crystals and affect the performance of liquid crystal devices. They also discuss fundamental equations regulating the adsorption phenomenon and the dynamic aspects of ion adsorption phenomenon in liquid crystalline systems. Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals serves as an excellent source of reference for graduates and researchers working in liquid crystals, complex fluids, condensed matter physics, statistical physics, chemical engineering, and electronic engineering, as well as providing a useful general introduction to and background information on the nematic liquid crystal phase.
This is the first book dedicated to the glass transition since this concept became recognized as a distinct and independent field of investigation. The glass transition is a synonym for relaxation and dynamics in complex disordered systems, especially in liquids. It embraces time-scales ranging from picoseconds to years. The book describes and interrelates the following processes: cooperative alpha processes in a cold liquid, structural relaxation in the glass near Tg, the Johari-Goldstein beta process, the Williams-Götze process in a warm liquid, fast nonactivated cage rattling and boson peak, and ultraslow Fischer modes. By describing the salient facts, explaining and discussing the fundamentals, the author attempts to introduce a unifying concept for the entire material. The formulas, diagrams and references are carefully selected to illustrate the main current ideas about the glass transition.
In recent years, there has been increasing activity in the research and design of optical systems based on liquid crystal (LC) science. Bringing together contributions from leading figures in industry and academia, Optical Applications of Liquid Crystals covers the range of existing applications as well as those in development. Unique in its thorough coverage of applications, not just the basic chemistry and physics of liquid crystals, the book begins with the existing applications of liquid crystals, from the ubiquitous LCD through to LC projectors and holography. The remaining chapters discuss more promising technologies in development, including photoaligning, photopatterning, and bistable twisted nematic LCs.
This book provides some insight into chemical defects in crystalline solids, focusing on the relationship between basic principles and device applications. It is concerned with the chemical, optical and electronic consequences of the presence of defects in crystals.
The KDP family of single crystals is composed of compounds of alkali metals with light or heavy (hydro, deutero) water and oxides of phosphate or arsenate, including ammonium, potassium, rubidium and caesium dihydro- and dideutero-phosphates, and similar arsenates. While not occurring in nature, their production exceeds that of any other water-soluble crystals and the demand for bigger and more optically pure crystals is ever increasing. KDP-Family Single Crystals is a comprehensive investigation of the crystallization mechanism for these systems. The first part of the book collects the majority of the available data on the physico-chemical analysis of these systems. This is complemented by a review of contemporary concepts related to the crystal growth dislocation mechanism under the influence of impurities, changing supersaturation, and temperature. This is not only relevant to the growth of KDP single crystals but to the majority of crystals grown from low- and high-temperature solutions. Finally, attention is given to the important problem of speeding up the production processes for the growth of these crystals while maintaining the quality of the crystals. The in-depth coverage that KDP-Family Single Crystals provides to the art of crystal growth techniques makes it an essential reference work for all those working in the field of crystal growth and to those using KDP-family crystals in quantum electronics devices.
The discovery of the spatial structure of the double-stranded DNA molecule is one of the greatest achievements of science. It would not be an exaggeration to say that the DNA double helix is a distinguished symbol of modern biology. Divided into three parts, DNA Liquid-Crystalline Dispersions and Nanoconstructions covers the information presently available on the condensation of various forms of DNA and describes practical applications of the peculiar properties of the liquid-crystalline particles. Part 1 describes the main methods used for condensation of linear high- and low-molecular mass DNA, including their complexes with polycations and circular DNA Part 2 compares the state and reactivity of double-stranded nucleic acid molecules fixed spatially in the liquid-crystalline as well as the same molecules under intracellular conditions Part 3 explains how the discovery of the fundamental principles underlying the formation of nucleic acid liquid-crystalline dispersion particles opens a gate for the operational use of these principles in the area of nanotechnology and biosensorics With detailed coverage of DNA liquid crystals, this book provides an understanding of the information presently available on the condensation of various forms of DNA. Double-stranded nucleic acids, spatially organized in a liquid-crystalline structure, represent an important polyfunctional tool for molecular biology and nanobiotechnology. The possibility of programmed and controlled variations in the properties of these molecules and in the characteristics of their liquid-crystalline dispersions, provides wide options for the formation of biologically active three-dimensional structures with unique, widely applicable properties.
An introduction to structure determination by x-ray crystallography, primarily for final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory postgraduate work in this area of crystallography. This substantially revised edition (2nd, 1985) adds a chapter o
This 1998 study introduces the physical principles of how and why crystals grow. The first three chapters recall the fundamental properties of crystal surfaces at equilibrium. The next six chapters describe simple models and basic concepts of crystal growth including diffusion, thermal smoothing of a surface, and applications to semiconductors. Following chapters examine more complex topics such as kinetic roughness, growth instabilities, and elastic effects. A brief closing chapter looks back at the crucial contributions of crystal growth in electronics during the twentieth century. The book focuses on growth using molecular beam epitaxy. Throughout, the emphasis is on the role played by statistical physics. Informative appendices, interesting exercises and an extensive bibliography reinforce the text.
Our understanding of the properties of materials, from drugs and proteins to catalysts and ceramics, is almost always based on structural information. This book describes the new developments in the realm of powder diffraction which make it possible for scientists to obtain such information even from polycrystalline materials. Written and edited by experts active in the field, and covering both the fundamental and applied aspects of structure solution from powder diffraction data, this book guides both novices and experienced practitioners alike through the maze of possibilities.
Sir Isaac Newton once declared that his momentous discoveries were only made thanks to having 'stood on the shoulders of giants'. The same might also be said of the scientists James Watson and Francis Crick. Their discovery of the structure of DNA was, without doubt, one of the biggest scientific landmarks in history and, thanks largely to the success of Watson's best-selling memoir 'The Double Helix', there might seem to be little new to say about this story. But much remains to be said about the particular 'giants' on whose shoulders Watson and Crick stood. Of these, the crystallographer Rosalind Franklin, whose famous X-ray diffraction photograph known as 'Photo 51' provided Watson and Crick with a vital clue, is now well recognised. Far less well known is the physicist William T. Astbury who, working at Leeds in the 1930s on the structure of wool for the local textile industry, pioneered the use of X-ray crystallography to study biological fibres. In so doing, he not only made the very first studies of the structure of DNA culminating in a photo almost identical to Franklin's 'Photo 51', but also founded the new science of 'molecular biology'. Yet whilst Watson and Crick won the Nobel Prize, Astbury has largely been forgotten. The Man in the Monkeynut Coat tells the story of this neglected pioneer, showing not only how it was thanks to him that Watson and Crick were not left empty-handed, but also how his ideas transformed biology leaving a legacy which is still felt today.
Covers different testing techniques used in quasi static and dynamic material characterization of cellular materials. Discusses additive manufacturing techniques for lattice specimen fabrication. Analyzes different finite element modeling techniques for quasi static and dynamic loading conditions. Presents a comparison and development of a phenomenological material model for use in computational analysis at various loading rates. Explores impact stress wave analysis under high velocity loading.
Synthesizing over thirty years of advances into a comprehensive textbook, Biomolecular Crystallography describes the fundamentals, practices, and applications of protein crystallography. Deftly illustrated in full-color by the author, the text describes mathematical and physical concepts in accessible and accurate language. It distills key concepts for understanding the practice and analysis of protein crystal structures and contains examples of biologically-relevant molecules, complexes, and drug target structures. Biomolecular Crystallography will be a valuable resource for advanced undergraduate and graduate students and practitioners in structural biology, crystallography, and structural bioinformatics.
Crystal Structure Refinement is a mixture of textbook and tutorial. As A Crystallographers Guide to SHELXL it covers advanced aspects of practical crystal structure refinement, which have not been much addressed by textbooks so far. After an introduction to SHELXL in the first chapter, a brief survey of crystal structure refinement is provided. Chapters three and higher address the various aspects of structure refinement, from the treatment of hydrogen atoms to the assignment of atom types, to disorder, to non-crystallographic symmetry and twinning. One chapter is dedicated to the refinement of macromolecular structures and two short chapters deal with structure validation (one for small molecule structures and one for macromolecules). In each of the chapters the book gives refinement examples, based on the program SHELXL, describing every problem in detail. It comes with a CD-ROM with all files necessary to reproduce the refinements.
This book reviews the state of the art for determining the "real" structure of matter. Nature does not stack atoms up in crystals in a perfect manner. Various types of "mistakes" find their way into the arrangements of atoms in real crystals. These mistakes or defects determine the physical properties of a material and understanding them is critical to predicting a new materials properties. This book reviews the principal characterisation technique permitting us to measure the defect solid state: X-ray diffraction.
Photo Atlas of Mineral Pseudomorphism provides a comprehensive overview on the topic of pseudomorphism-in which one mineral is replaced by another but still maintains its original crystal form-a phenomenon that is far more common than currently thought and is extremely important in understanding the geologic history of rocks. There are many examples of pseudomorphs, but they have never been brought together in a single reference book that features high-resolution, full-color pseudomorph formations together with the original minerals that they have replaced. This book is the essential reference book for mineralogists, geologists or anyone who encounters mineral pseudomorphism in their work. |
You may like...
Love and the Politics of Care - Methods…
Stanislava Dikova, Wendy McMahon, …
Hardcover
R3,018
Discovery Miles 30 180
Fiber Crystal Growth from the Melt
Tsuguo Fukuda, Peter Rudolph, …
Hardcover
R4,170
Discovery Miles 41 700
|