![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Crystallography
Despite the tremendous advances in the techniques and equipment for
carrying out high-pressure crystallography, the application or
exploration of the high-pressure variable in detailed structural
studies remains rare. The chapters in this book provide a set of
lecture notes and supplementary material for a course on high
pressure crystallography. The material comprises state-of-the-art
reviews of high-pressure experiments using X-ray and neutron
diffraction techniques at synchrotron and neutron facilities and in
the laboratory, as well as complementary experimental high-pressure
techniques and theoretical methods for investigating matter at
elevated pressures. The materials studies range from elemental
solids and liquids to inorganic compounds, minerals, organic
compounds, clathrates and pharmaceutical compounds, to large
biological molecules such as proteins and viruses.
There have been many advances in x-ray crystallography since the
production of the third edition of this book, and the authors have
endeavoured to introduce a number of them into this new edition.
The overall plan of the book has been maintained because we believe
that it has been well received in the academic community, but
substantial revisions have been carried out and new material and
chapters added. In particular, we have extended the discussion of
the theory of x-ray diffraction and added new chapters on structure
determination from powder data, on macromolecular crystallography,
and on computational procedures in x-ray crystallography. We
consider that x-ray crystallography is a universal tool for
studying molecular structure, a view upheld by the pioneers in the
subject, notably W.H. & W.L. Bragg, J. D. Bernal, Dorothy
Hodgkin (nA(c)e Crowfoot), Kathleen Lonsdale (nA(c)e Yardley), and
Linus Pauling, so that the broadening of the scope of the text in
this way is fully justified. This edition is accompanied by a suite of computer programs on a compact disc. The programs enable the reader to participate fully in many of the aspects of x-ray crystallography discussed in the book. In particular, the program system XRAY* is interactive, and enables the reader to follow through, at the monitor screen, the computational techniques involved in single-crystal structure determination, albeit in two dimensions. Several sets of x-ray data areprovided for practice with this system.
Diese Arbeit enthiilt zwei grof3ere Fallstudien zur Beziehung zwischen theo- retischer Mathematik und Anwendungen im 19. Jahrhundert. Sie ist das Ergebnis eines mathematikhistorischen Forschungsprojekts am Mathemati- schen Fachbereich der Universitiit-Gesamthochschule Wuppertal und wurde dort als Habilitationsschrift vorgelegt. Ohne das wohlwollende Interesse von Herrn H. Scheid und den Kollegen der Abteilung fUr Didaktik der Mathema- tik ware das nicht moglich gewesen: Inhaltlich verdankt sie - direkt oder indirekt - vielen Beteiligten et- was. So wurde mein Interesse an den kristallographischen Symmetriekon- zepten, dem Thema der ersten Fallstudie, durch Anregungen und Hinweise von Herrn E. Brieskorn geweckt. Sowohl von seiner Seite als auch von Herrn J. J. Burckhardt stammen uberdies viele wert volle Hinweise zum Manuskript von Kapitel I. Herrn C. J. Scriba mochte ich fur seine die gesamte Arbeit betreffenden priizisen Anmerkungen danken und Herrn W. Borho ebenso fUr seine ubergreifenden Kommentare und Vorschlage. Beziiglich der in Kapitel II behandelten projektiven Methoden in der Baustatik des 19. Jahrhunderts gilt mein besonderer Dank den Herren K. -E. Kurrer und T. Hiinseroth fUr ihre zum Teil sehr detaillierten Anmerkungen aus dem Blickwinkel der Geschichte der Bauwissenschaften. Schliefilich geht mein Dank an alle nicht namentlich Erwiihnten, die in Gesprachen, technisch oder auch anderweitig zur Fertig- stellung dieser Arbeit beigetragen haben. Fur die vorliegende Publikation habe ich einen Anhang mit einer Skizze von in unserem Zusammenhang besonders wichtig erscheinenden Aspekten der Theorie der kristallographischen Raumgruppen hinzugefUgt. Ich hoffe, daB er zum Verstiindnis des mathematischen Hintergrunds der historischen Arbeiten des ersten Kapitels beitragt.
This work presents a snapshot of the state of the art of modern biomolecular crystallography, from crystallisation through structure determination and even interactive presentation on the web. Methods driving the latest automated structure determination pipelines are explained, as well as how to deal with problems such as crystal pathologies that still demand expert analysis. These methods are illustrated through their application to problems of great biological interest, such as the molecular machinery underlying the complement pathway, the mechanism of action of monoamine oxidase inhibitors, and the structure of the eukaryotic ribosome. Complementary approaches, such as neutron diffraction, small angle X-ray scattering, coherent diffraction and computational modelling, are also explored.
"Aperiodic Crystals" collects 37 selected papers from the scientific contributions presented at "Aperiodic" 2012 - theSeventh International Conference on Aperiodic Crystalsheld held in Cairns, Australia, 2-7 of September 2012. The volume discusses state-of-the-art discoveries, new trends and applications of aperiodic crystals - including incommensurately modulated crystals, composite crystals, and quasicrystals - from a wide range of different perspectives. Starting with a general historical introduction to aperiodic crystals, the book proceeds to examine the complex mathematics of aperiodic long-range order, as well as the theoretical approaches aimed at understanding some of the unique properties and mechanisms underlying the existence of aperiodic crystals. The book then explores in detail such topics as complex metallic alloys, modulated structures, quasicrystals and their approximants, dynamics, disorder and defects in quasicrystals. It concludes with an analysis of quasicrystal surfaces and their properties. By describing the latest research and the progress made on the structure determination of aperiodic crystals and the influence of this unique structure on their physical properties, this book represents a valuable resource to mathematicians, crystallographers, physicists, chemists, materials and surface scientists, and even architects and artists, interested in the fascinating nature of aperiodic crystals.
This volume comprises papers presented at the 40th Erice Course "From Molecules to Medicine: Structure of Biological Macromolecules and Its Relevance in Combating New Diseases and Bioterrorism," May 29 to June 8, 2008. The papers span the breadth of material presented, which emp- size the practical aspects of modern macromolecular crystallography and its applications to medicine. Topics addressed span from the selection of targets, through to structure determination, interpretation and exploitation. A particular theme that emerges is the dependence of modern structural science on multiple experimental and computational techniques. It is both the development of these techniques and their integration that will take us forward in the future. The NATO ASI directors worked alongside, and offer deep gratitude to Prof. Sir Tom Blundell, Director of the International School of Crystal- graphy, Dr Colin Groom, Dr Neera Borkakoti, Dr John Irwin and Prof. Lodovico Riva di Sanseverino, who were in turn supported by a number of local facilitators. The course was financed by NATO as an Advanced Study Institute. Additional support was given by the European Crystallographic Association, the International Union of Biochemistry and Molecular Biology, the Int- national Union of Crystallography, the University of Bologna, AstraZeneca, Roche, Merck & Co., Boehringer Ingelheim, Bruker Corporation, Douglas Instruments, Informa UK, the Department of Pharmaceutical Chemistry, TTP Lab Tech, University of California at San Francisco. Joel L. Sussman and Paola Spadon
From the reviews: " ...] an excellent reference book. I have no doubt it will become a much-thumbed resource for students and researchers in mineralogy and crystallography." Geological Magazine
Intended for researchers and students in physics, chemistry and materials science, this work aims to provide the necessary background information and sufficient mathematical and physical detail to study research literature in nuclear magnetic resonance studies of liquid crystals. This second edition, updated throughout, incorporates many new references, corrects typographical errors, and includes new mathematical appendices.
This volume is a collection of the contributions presented at the 42nd Erice Crystallographic Course whose main objective was to train the younger generation on advanced methods and techniques for examining structural and dynamic aspects of biological macromolecules. The papers review the techniques used to study protein assemblies and their dynamics, including X-ray diffraction and scattering, electron cryo-electron microscopy, electro nanospray mass spectrometry, NMR, protein docking and molecular dynamics. A key theme throughout the book is the dependence of modern structural science on multiple experimental and computational techniques, and it is the development of these techniques and their integration that will take us forward in the future.
This book covers the thermodynamic foundations of inorganic materials science and the controlled synthesis of inorganic materials. A new thermodynamic approach to the non-stoichiometry of crystalline solids, known as vapor pressure scanning, has been developed by the author and is described in detail in this book. It is based on the high-precision experimental determination of the boundaries of the single-phase volume of the solid in the pressure-temperature-composition P-T-X phase space. This approach has been tested on a number of inorganic materials and has been shown to have an unparalleled precision (up to 10-4 at.%) in the determination of non-stoichiometry directly at high temperatures (up to 1200° C). Along with the results obtained by the author and his colleagues, the P-T-X diagrams of other important materials (e.g., III-V, IV-VI semiconductors) are also discussed.
The combination of solid materials of different structural dimensionality with atomic or molecular guest species via intercalation processes represents a unique and widely variable low temperature synthesis strategy for the design of solids with particular composition, structure and physical properties. In the last decade this field has experienced a rapid development and represents now an established specific domain of solid state research and materials science. Substantial progress has been made with respect to an understanding of the complex relationship between structure, bonding, physical properties and chemical reactivity since the first volume on the subject appeared in this series in 1979 (Intercalated Layered Materials, F. Levy, ed.). The purpose of this volume is to present a survey on progress and per spectives based on the treatment of a series of major areas of activities in this field. By the very nature of its subject this monograph has an interdisciplinary character and addresses itself to chemists, physicists and materials scien tists interested in intercalation research and related aspects such as design and characterization of complex materials, low temperature synthesis, solid state reaction mechanisms, electronic/ionic conductivity, control of electronic properties of solids with different structural dimensionality and application of intercalation systems. Several chapters have been devoted to specific groups of host lattices."
The Supramolecular Compounds refer to organised multi-molecular assemblies and associated phenomena. The stability and the properties of these compounds strongly involve structural three-dimensional (3D) information. The crystal itself can be considered as a giant supermolecule. Thus, a thorough understanding of crystal structures and crystal growth provides a unique information on the intermolecular interactions. Indeed, each crystal reflects in a particular way the recognition properties of molecules. More so, modern crystallography allows to study in detail two or three-component crystalline solids in which the recognition processes can be seen from the structural standpoint. Crystallography of smaller and smaller single crystals, faster and faster experiments, time-resolved x-ray crystallography, are extremely potent source of physico-chemical information. The present Advanced Study Institute (A.S.I.) - which was planned five years ago as the 22nd Course of the International School of Crystallography (director: T. L. BLUNDELL), 1-11 June 1995, E. Majorana Centre, Erice, Italy - is probably the first international meeting specifically devoted to the Crystallography of Supramolecular Compounds. The presence of crystallographers, chemists and physicists enhanced the coherence of the typical sequence: Conception and Design - Synthesis - Structure and Visualisation - Properties. The interactive and interdisciplinary character of this research is central to the development of general structural models for a large spectrum of compounds: ionophores, cryptates, fullerenes, calixarenes, cyclodextrins, cyclotriveratrylenes, pillar type compounds, zeolites, hydrates, solvates and others."
This book of the proceedings of the 1997 NATO Advanced Study Institute (ASI) on Direct Methods for Solving Macromolecular Structures was assembled from the lecturers' contributions and represents a comprehensive and in-depth overview of crystallographic structure determination methods for macromolecules. While having a focus based on the direct methods, the Institute adopted an inclusive and broad perspective. Thus, both direct and experimental phasing techniques are presented in this book, highlighting their complementarities and synergies. As weil, methodologies spanning the full crystallographic image reconstruction process - from low resolution envelope definition to high resolution atomic refinement- are discussed. The first part of the book introduces the array of tools currently used in structure determination, whether originating from a mathematical, computational or experimental framework. This section of the book displays the variety and ingenuity of old and new phasing approaches developed to solve increasingly complex structures. Some of the contributions focus on recent developments and/or implementations that have given older approaches a new life. A case in point is the re-implementation of Buerger's superposition approach, which is now solving protein structures. Another beautiful example is found in the introduction to the traditional multiple isomorphous replacement approach where new techniques, such as site-directed mutagenesis and the use of inert gases in the preparation of heavy atom derivatives, are described. Equally impressive are the presentations of newer approaches, which take advantage of advances on the experimental front (e. g.
Coverings are efficient ways to exhaust Euclidean N-space with congruent geometric objects. Discrete quasiperiodic systems are exemplified by the atomic structure of quasicrystals. The subject of coverings of discrete quasiperiodic sets emerged in 1995. The theory of these coverings provides a new and fascinating perspective of order down to the atomic level. The authors develop concepts related to quasiperiodic coverings and describe results. Specific systems in 2 and 3 dimensions are described with many illustrations. The atomic positions in quasicrystals are analyzed.
This book by Lev M. Blinov is ideal to guide researchers from their very first encounter with liquid crystals to the level where they can perform independent experiments on liquid crystals with a thorough understanding of their behaviour also in relation to the theoretical framework. Liquid crystals can be found everywhere around us. They are used in virtually every display device, whether it is for domestic appliances of for specialized technological instruments. Their finely tunable optical properties make them suitable also for thermo-sensing and laser technologies. There are many monographs written by prominent scholars on the subject of liquid crystals. The majority of them presents the subject in great depth, sometimes focusing on a particular research aspect, and in general they require a significant level of prior knowledge. In contrast, this books aims at an audience of advanced undergraduate and graduate students in physics, chemistry and materials science. The book consists of three parts: the first part, on structure, starts from the fundamental principles underlying the structure of liquid crystals, their rich phase behaviour and the methods used to study them; the second part, on physical properties, emphasizes the influence of anisotropy on all aspects of liquid crystals behaviour; the third, focuses on electro-optics, the most important properties from the applications standpoint. This part covers only the main effects and illustrates the underlying principles in greater detail. Professor Lev M. Blinov has had a long carrier as an experimentalist. He made major contributions in the field of ferroelectric mesophases. In 1985 he received the USSR state prize for investigations of electro-optical effects in liquid crystals for spatial light modulators. In 1999 he was awarded the Frederiks medal of the Soviet Liquid Crystal Society and in 2000 he was honoured with the G. Gray silver medal of the British Liquid Crystal Society. He has held many visiting academic positions in universities and laboratories across Europe and in Japan.
X-ray crystallography has long been a vital method for studying the structure of proteins and other macromolecules. As the importance of proteins continues to grow, in fields from biochemistry and biophysics to pharmaceutical development and biotechnology, many researchers have found that a knowledge of X-ray diffraction is an indispensable tool. In this new edition of his essential work, Dr. Jan Drenth, recognized internationally for his numerous contributions to crystallographic research, has provided an up-to-date and technically rigorous introduction to the subject. Principles of Protein X-ray Crystallography provides the theoretical background necessary to understand how the structure of proteins is determined at atomic resolution. It is intended to serve as an introduction for graduate students, postdoctoral researchers, and established scientists who want to use protein crystallography in their own endeavors, or need to understand the subject in order to critically evaluate the literature. New additions to the book include a section on twinning, an additional chapter on crystal growth and a discussion of single-wavelength anomalous dispersion (SAD).
Arbeitshypothesen sind revidierbar, deklarierten Wahrheiten nicht, sie verkalken zum System; Arbeitshypothesen passen sich den Menschen an, den deklarierten Wahrheiten wird der Mensch angepajJt; die ersten kann mann verwerfen, von den anderen wird man verworfen. FRIEDRICH DORRBNMATI, Nachgedanken Working hypotheses can be revised, ' declared truths cannot-they calcify into dogma. Working hypotheses adapt to people-people adapt to declared truths. One can reject the first but be rejected by the latter. The concept of electron crystallography, i.e., the quantitative use of electron diffraction intensities to solve crystal structures, is by no means new. Based on extensive pioneering efforts on organic and inorganic substances, two major works on electron diffraction structure analysis (or "electronography" as it was then known in Moscow) appeared in English translation during the 19608. These books are B. K. Vainshtein, Strukturnaya Elektronografiya (Structure Analysis by Electron Diffrac tion, translated by E. Feigl andJ. A. Spink, Pergamon Press, Oxford, 1964), and B. B."
Crystal engineering - where the myriad of intermolecular forces
operating in the solid-state are employed to design new nano- and
functional materials - is a key new technology with implications
for catalysis, pharmaceuticals, synthesis and materials science.
In this, the only book available to combine both theoretical and practical aspects of x-ray diffraction, the authors emphasize a "hands on" approach through experiments and examples based on actual laboratory data. Part I presents the basics of x-ray diffraction and explains its use in obtaining structural and chemical information. In Part II, eight experimental modules enable the students to gain an appreciation for what information can be obtained by x-ray diffraction and how to interpret it. Examples from all classes of materials -- metals, ceramics, semiconductors, and polymers -- are included. Diffraction patterns and Bragg angles are provided for students without diffractometers. 192 illustrations.
The reader shall find in the offered monograph a systematic presentation of scientific effects in the field of anisotropy studies reached by the author and his collaborators in the period of recent four decades: published and discussed in a number of papers and conference contributions. The central construction line of discussion is to be sought in the full and comprehensive analysis of ret: ) function defining the anisotropy coefficient varying during the tensile test. No doubt, this function can be considered as a nutshell carrier ofcomprehensive information about the essential features influencing the directionality of the studied material's plasticity. The function also provides the basis to elaborate methods used in the determination of such characteristics. In the historical presentation of literature in the field of plastic anisotropy, the original input was offered by W.M. Baldwin Jr., already in 1946, who observed the differentiated strain rates in three mutually perpendicular directions of the sample subjected to static tensile test. In the following years, further and expanded analysis of the problem was undertaken by Lankford, Hill, Gensamer, Jackson, Low and Smith. |
![]() ![]() You may like...
Concern for the Church in the World
Laura Schmidt Roberts
Hardcover
Christ Among the Nations - Narratives of…
Sarita Gallagher Edwards, Robert L. Gallagher, …
Paperback
Workplace Grace - Becoming a Spiritual…
Bill Peel, Walt Larimore
Hardcover
R524
Discovery Miles 5 240
|