Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Engineering skills & trades
Manufacturing processes have undergone significant developments in recent years. With the application of new technology, the productivity of companies has increased tremendously. 3D Printing and Its Impact on the Production of Fully Functional Components: Emerging Research and Opportunities is an innovative source of scholarly research on the advancements of 3D printing technology in modern manufacturing processes. Highlighting critical perspectives on topics such as industrial applications, 3D modeling, and bioprinting, this publication is ideally designed for professionals, academics, engineers, students, and practitioners interested in the latest trends in additive manufacturing.
Historians of the various tools trades have long wanted a work specifically on saws and this, the first, is an attempt to match the detail and scholarship of the best that cover planes, cutlery, spanners and measuring tools. The author is a frequent writer and lecturer on saws and the history of their manufacture, and is able to base his work on 15 years of original research and the building of a personal collection of saws - probably the largest in the world - which is housed with the renowned Ken Hawley Collection in Sheffield's Kelham Island Industrial Museum. Together, these collections form a unique research base and visitor attraction. This scholarly book is illustrated with almost 2000 photographs, the majority by the author, and with its listings of saw makers and dealers forms the most comprehensive directory to date of British names in the tool trades.
This book systematically describes the weld pool behavior in laser welding and its influencing factors from the perspectives of testing technology, theoretical calculation and process simulation technology, physical state transformation behavior of weld pools, and the impact of technical conditions on the weld pool behavior. The book covers extensive research achievements made in China in this field, some of which represent the latest cutting-edging researches conducted by the authors' research team. These latest research efforts mainly relate to the weld pool behavior of dual-beam laser welding, laser welding with filler wires, full-penetration laser welding of very-thick parts, and laser welding in vacuum and low vacuum conditions. The book is intended for undergraduate, graduate students and researchers who are interested in laser welding.
This book presents some developments in the field of welding technology. It starts with classical welding concepts, covering then new approaches. Topics such as ultrasonic welding, robots welding, welding defects and welding quality control are presented in a clear, didactic way. Lower temperature metal-joining techniques such as brazing and soldering are highlighted as well.
This book describes the application of vision-sensing technologies in welding processes, one of the key technologies in intelligent welding manufacturing. Gas tungsten arc welding (GTAW) is one of the main welding techniques and has a wide range of applications in the manufacturing industry. As such, the book also explores the application of AI technologies, such as vision sensing and machine learning, in GTAW process sensing and feature extraction and monitoring, and presents the state-of-the-art in computer vision, image processing and machine learning to detect welding defects using non-destructive methods in order to improve welding productivity. Featuring the latest research from ORNL (Oak Ridge National Laboratory) using digital image correlation technology, this book will appeal to researchers, scientists and engineers in the field of advanced manufacturing.
This collection presents fundamentals and the current status of friction stir welding (FSW) and solid-state friction stir processing of materials, and provides researchers and engineers with an opportunity to review the current status of the friction stir related processes and discuss the future possibilities. Contributions cover various aspects of friction stir welding and processing including their derivative technologies. Topics include but are not limited to: * derivative technologies * high-temperature lightweight applications * industrial applications * dissimilar alloys and/or materials * controls and nondestructive examination * simulation * characterization
This book reports the best practices that companies established in Latin America are implementing in their manufacturing processes in order to generate high quality products and stay in the market. It lists the technologies, production and administrative philosophies that are being implemented, presenting a collection of successful cases of studies from Latin America. The book describes how the tools and techniques are being integrated, modified and combined to create new technical resources for assisting the decision making process for better economic performance in manufacturing companies. The efforts deployed for assisting the transformation of raw materials into products and services are described. The authors explain the main key success factors or drivers for success of each tool, technique or hybrid combination approach applied to solve manufacturing problems.
This book is intended as a text for upper undergraduate and graduate courses on kinetics of metallurgical processes for students of materials science, metallurgical engineering, and chemical engineering. Focusing on basic and essential topics, selected from the authors' teaching and research, it serves as a comprehensive guide to metallurgical kinetics. Chapters 1-10 discuss the "logic" of various kinetics processes, while Chapter 11 explores the systematic analysis of raw rate data generated from controlled experiments. The final chapters illustrate how the fundamental concept of thermal activation is used to describe the kinetics of rate-dependent plastic deformation and creep fracture. With numerous examples, illustrations, and step-by-step tutorials, it is ideally suited for both self-study and classroom use. The examples were selected from research papers to highlight how the topics discussed can be, and are, used to solve real-world technological problems. Providing a comprehensive list of resources for further study, and end-of-chapter review questions to help students test their knowledge, it can be used for university coursework or as a text for professional development courses.
This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks. Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material. However, copper wire bonding has several process and reliability concerns due to its material properties. Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes-bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation. In addition, the bond-pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed. The book also discusses best practices and recommendations on the bond process, bond-pad metallurgies, and appropriate reliability tests for copper wire-bonded electronic components. In summary, this book: Introduces copper wire bonding technologies Presents copper wire bonding processes Discusses copper wire bonding metallurgies Covers recent advancements in copper wire bonding including the bonding process, equipment changes, bond-pad materials and surface finishes Covers the reliability tests and concerns Covers the current implementation of copper wire bonding in the electronics industry Features 120 figures and tables Copper Wire Bonding is an essential reference for industry professionals seeking detailed information on all facets of copper wire bonding technology.
This book introduces social manufacturing, the next generation manufacturing paradigm that covers product life cycle activities that deal with Internet-based organizational and interactive mechanisms under the context of socio-technical systems in the fields of industrial and production engineering. Like its subject, the book's approach is multi-disciplinary, including manufacturing systems, operations management, computational social sciences and information systems applications. It reports on the latest research findings regarding the social manufacturing paradigm, the architecture, configuration and execution of social manufacturing systems and more. Further, it describes the individual technologies enabled by social manufacturing for each topic, supported by case studies. The technologies discussed include manufacturing resource minimalization and their socialized reorganizations, blockchain models in cybersecurity, computing and decision-making, social business relationships and organizational networks, open product design, social sensors and extended cyber-physical systems, and social factory and inter-connections. This book helps engineers and managers in industry to practice social manufacturing, as well as offering a systematic reference resource for researchers in manufacturing. Students also benefit from the detailed discussions of the latest research and technologies that will have been put into practice by the time they graduate.
This book provides details on the innovations made to achieve sustainability in manufacturing. It highlights the trends of current progress in research and development being done to achieve overall sustainability in manufacturing technology. Green-EDM, Hybrid machining, MQL assisted machining, sustainable casting, welding, finishing and casting, energy- and resource-efficient manufacturing are some of the important topics discussed in this book.
This book provides a comprehensive and thorough guide to those readers who are lost in the often-confusing context of weld fatigue. It presents straightforward information on the fracture mechanics and material background of weld fatigue, starting with fatigue crack initiation and short cracks, before moving on to long cracks, crack closure, crack growth and threshold, residual stress, stress concentration, the stress intensity factor, J-integral, multiple cracks, weld geometries and defects, microstructural parameters including HAZ, and cyclic stress-strain behavior. The book treats all of these essential and mutually interacting parameters using a unique form of analysis.
This book describes load modeling approaches for complex work pieces and batch forgings, and demonstrates analytical modeling and data-driven modeling approaches for known and unknown complex forging processes. It overcomes the current shortcomings of modeling, analysis and control approaches, presenting contributions in three major areas: In the first, several novel modeling approaches are proposed: a process/shape-decomposition modeling method to help estimate the deformation force; an online probabilistic learning machine for the modeling of batch forging processes; and several data-driven identification and modeling approaches for unknown forging processes under different work conditions. The second area develops model-based dynamic analysis methods to derive the conditions of stability and creep. Lastly, several novel intelligent control methods are proposed for complex forging processes. One of the most serious problems in forging forming involves the inaccurate forging conditions, velocity and position offered by the hydraulic actuator due to the complexity of both the deformation process of the metal work piece and the motion process of the hydraulic actuator. The book summarizes the current weaknesses of modeling, analysis and control approaches. are summarized as follows: a) With the current modeling approaches it is difficult to model complex forging processes with unknown parameters, as they only model the dynamics in local working areas but do not effectively model unknown nonlinear systems across multiple working areas; further, they do not take the batch forging process into account, let alone its distribution modeling. b) All previous dynamic analysis studies simplify the forging system to having a single-frequency pressure fluctuation and neglect the influences of non-linear load force. Further, they fail to take the flow equation in both valves and cylinders into account. c) Conventional control approaches only consider the linear deformation force and pay no attention to sudden changes and the motion synchronization for the multi-cylinder system, making them less effective for complex, nonlinear time-varying forging processes subject to sudden changes.
This book presents guidelines on quantitative and qualitative measures of the geometric features and imperfections of welds to ensure that it meets the fatigue strength requirements laid out in the recommendations of the IIW (International Institute of Welding). Welds that satisfy these quality criteria can be assessed in accordance with existing IIW recommendations based on nominal stress, structural stress, notch stress or linear fracture mechanics. Further, the book defines more restrictive acceptance criteria based on weld geometry features and imperfections with increased fatigue strength. Fatigue strength for these welds is defined as S-N curves expressed in terms of nominal applied stress or hot spot stress. Where appropriate, reference is made to existing quality systems for welds.In addition to the acceptance criteria and fatigue assessment curves, the book also provides guidance on their inspection and quality control. The successful implementation of these methods depends on adequate training for operators and inspectors alike. As such, the publication of the present IIW Recommendations is intended to encourage the production of appropriate training aids and guidelines for educating, training and certifying operators and inspectors.
This unique volume imparts practical information on the operation, maintenance, and modernization of heavy performance machines such as lignite mine machines, bucket wheel excavators, and spreaders. Problems of large scale machines (mega machines) are highly specific and not well recognized in the common mechanical engineering environment. Prof. Rusinski and his co-authors identify solutions that increase the durability of these machines as well as discuss methods of failure analysis and technical condition assessment procedures. "Surface Mining Machines: Problems in Maintenance and Modernization" stands as a much-needed guidebook for engineers facing the particular challenges of heavy performance machines and offers a distinct and interesting demonstration of scale-up issues for researchers and scientists from across the fields of machine design and mechanical engineering.
This book presents selected papers from the international conference on advanced manufacturing and materials sciences (ICAMMS 2018). The papers reflet recent advances in manufacturing sector focusing on process optimization and give emphasis to testing and evaluation of new materials with potential use in industrial applications.
This book describes and systemizes analytical and numerical solutions for a broad range of instantaneous and continuous, stationary and moving, concentrated and distributed, 1D, 2D and 3D heat sources in semi-infinite bodies, thick plane layers, thin plates and cylinders under various boundary conditions. The analytical solutions were mainly obtained by the superimposing principle for various parts of the proposed 1D, 2D and 3D heat sources and based on the assumption that only heat conduction plays a major role in the thermal analysis of welds. Other complex effects of heat transfer in weld phenomena are incorporated in the solutions by means of various geometrical and energetic parameters of the heat source. The book is divided into 13 chapters. Chapter 1 briefly reviews various welding processes and the energy characteristics of welding heat sources, while Chapter 2 covers the main thermophysical properties of the most commonly used alloys. Chapter 3 describes the physical fundamentals of heat conduction during welding, and Chapter 4 introduces several useful methods for solving the problem of heat conduction in welding. Chapters 5 and 6 focus on the derivation of analytical solutions for many types of heat sources in semi-infinite bodies, thick plane layers, thin plates and cylinders under various boundary conditions. The heat sources can be instantaneous or continuous, stationary or moving, concentrated or distributed (1D, 2D or 3D). In Chapter 7 the temperature field under programmed heat input (pulsed power sources and weaving sources) is analyzed. In turn, Chapters 8 and 9 cover the thermal cycle, melting and solidification of the base metal. Heating and melting of filler metal are considered in Chapter 10. Chapter 11 addresses the formulation and solution of inverse heat conduction problems using zero-, first- and second-order algorithms, while Chapter 12 focuses on applying the solutions developed here to the optimization of welding conditions. In addition, case studies confirm the usefulness and feasibility of the respective solutions. Lastly, Chapter 13 demonstrates the prediction of local microstructure and mechanical properties of welded joint metals, while taking into account their thermal cycle. The book is intended for all researches, welding engineers, mechanical design engineers, research engineers and postgraduate students who deal with problems such as microstructure modeling of welds, analysis of the mechanical properties of welded metals, weldability, residual stresses and distortions, optimization of welding and allied processes (prewelding heating, cladding, thermal cutting, additive technologies, etc.). It also offers a useful reference guide for software engineers who are interested in writing application software for simulating welding processes, microstructure modeling, residual stress analysis of welds, and for robotic-welding control systems.
Providing a comprehensive overview of hot stamping (also known as 'press hardening'), this book examines all essential aspects of this innovative metal forming method, and explores its various uses. It investigates hot stamping from both technological and business perspectives, and outlines potential future developments. Individual chapters explore topics such as the history of hot stamping, the state of the art, materials and processes employed, and how hot stamping is currently being used in the automotive industry to create ultra-high-strength steel components. Drawing on experience and expertise gathered from academia and industry worldwide, the book offers an accessible resource for a broad readership including students, researchers, vehicle manufacturers and metal forming companies.
A comprehensive, visual handbook for welding in the farm, home workshop, school workshop, blacksmith shop, or auto shop. Almost anyone can weld, cut, or shape metal. That's the starting point for this supremely practical book which helps the beginner to improve and the intermediate operator to broaden their technique. Its 10 sections describe all the major types of welds before progressing into trickier methods. With this comprehensive guide, you’ll understand everything you need to know, from arc, TIG, MIG, and gas welding to plasma cutting, soldering, welding plastic, and more. Beyond welding metals and plastics, advice extends into the wider workshop with chapters on drills, cutting threads, and basic blacksmithing. Filled with helpful visuals and photography, detailed explanations, expert suggestions, and step-by-step directions, author and experienced welding instructor Andrew Pearce also lays out common pitfalls and mistakes, and how to avoid or correct them. New, updated edition will include two brand new chapters on general welding skills, plus several new step-by-step projects featuring welding and metal shop accessories being created.
This book describes efficient and safe repair operations for pipelines, and develops new methods for the detection and repair of volumetric surface defects in transmission pipelines. It also addresses the physics, mechanics, and applications of advanced materials used for composite repair of corroded pipelines. Presenting results obtained in the European Commission's INNOPIPES FRAMEWORK 7 programme, it develops long-range ultrasonic and phased array technologies for pipeline diagnostics, and explores their interactions with discontinuities and directional properties of ultrasonic antenna array. The book subsequently shares the results of non-destructive testing for different types of materials applications and advanced composite repair systems, and characterizes the mechanical properties by means of fracture methods and non-destructive techniques. In turn, the book assesses the currently available technologies for reinforcement of pipelines, drawing on the experience gai ned by project partners, and evaluates the recovery of the carrying capacity of pipeline sections with local corrosion damage by means of analytical and numerical procedures. It develops an optimization method based on the planning of experiments and surface techniques for advanced composite repair systems, before validating the numerical models developed and experimentally gauging the effectiveness of composite repair with the help of full-scale hydraulic tests.
This books presents a current look at friction stir welding technology from application to characterization and from modeling to R&D. It is a compilation of the recent progress relating to friction stir technologies including derivative technologies, high-temperature applications, industrial applications, dissimilar alloy/materials, lightweight alloys, simulation, and characterization. With contributions from leaders and experts in industry and academia, this will be a comprehensive source for the field of Friction Stir Welding and Processing. |
You may like...
Concentrating Solar Thermal Technologies…
Maria Isabel Roldan Serrano
Hardcover
R3,508
Discovery Miles 35 080
Piezoelectric Ceramic Resonators
Jiri Erhart, Petr Pulpan, …
Hardcover
R3,347
Discovery Miles 33 470
Micro and Nano Fabrication - Tools and…
Hans H. Gatzen, Volker Saile, …
Hardcover
R4,297
Discovery Miles 42 970
Advances in Metal Forming - Expert…
Rahulkumar Shivajirao Hingole
Hardcover
Advances in Production Research…
Robert Schmitt, Gunther Schuh
Hardcover
Advanced Manufacturing and Automation…
Kesheng Wang, Yi Wang, …
Hardcover
R9,113
Discovery Miles 91 130
Machining, Joining and Modifications of…
Andreas Oechsner, Holm Altenbach
Hardcover
Structural Hot-Spot Stress Approach to…
Erkki Niemi, Wolfgang Fricke, …
Hardcover
R3,508
Discovery Miles 35 080
|