![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Engineering skills & trades
This book helps the reader to understand the specific properties of piezoelectric ceramic resonators. It provides their theoretical description by immitance and equivalent circuit method. The nummerical modelling described is accompanied by examples of properties measured experimentally. Piezoelectric ceramic transformers are also covered, followed by a series of solved and unsolved problems prepared specially for students.
For Microelectromechanical Systems (MEMS) and Nanoelectromechanical Systems (NEMS) production, each product requires a unique process technology. This book provides a comprehensive insight into the tools necessary for fabricating MEMS/NEMS and the process technologies applied. Besides, it describes enabling technologies which are necessary for a successful production, i.e., wafer planarization and bonding, as well as contamination control.
This comprehensive book offers a clear account of the theory and applications of advanced metal forming. It provides a detailed discussion of specific forming processes, such as deep drawing, rolling, bending extrusion and stamping. The author highlights recent developments of metal forming technologies and explains sound, new and powerful expert system techniques for solving advanced engineering problems in metal forming. In addition, the basics of expert systems, their importance and applications to metal forming processes, computer-aided analysis of metalworking processes, formability analysis, mathematical modeling and case studies of individual processes are presented.
This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quality or to furnish a protective layer. Accordingly, sections on laser treatment, shot peening and the production of protective layers round out the book's coverage.
The proceedings brings together a selection of papers from the 7th International Workshop of Advanced Manufacturing and Automation (IWAMA 2017), held in Changshu Institute of Technology, Changshu, China on September 11-12, 2017. Most of the topics are focusing on novel techniques for manufacturing and automation in Industry 4.0. These contributions are vital for maintaining and improving economic development and quality of life. The proceeding will assist academic researchers and industrial engineers to implement the concepts and theories of Industry 4.0 in industrial practice, in order to effectively respond to the challenges posed by the 4th industrial revolution and smart factories.
This book discusses the technical feasibility of aqueous cleaning as a substitute for chlorofluorocarbon (CFC) and chlorinated solvent cleaning in the metal and electronics industries, and, further, assesses the market prospects for this technology based on its performance characteristics and current trends in environmental regulation.
This book covers the state-of-the-art technologies in dynamic balancing of mechanisms with minimum increase of mass and inertia. The synthesis of parallel robots based on the Decomposition and Integration concept is also covered in detail. The latest advances are described, including different balancing principles, design of reactionless mechanisms with minimum increase of mass and inertia, and synthesizing parallel robots. This is an ideal book for mechanical engineering students and researchers who are interested in the dynamic balancing of mechanisms and synthesizing of parallel robots. This book also: * Broadens reader understanding of the synthesis of parallel robots based on the Decomposition and Integration concept * Reinforces basic principles with detailed coverage of different balancing principles, including input torque balancing mechanisms * Reviews exhaustively the key recent research into the design of reactionless mechanisms with minimum increase of mass and inertia, such as the design of reactionless mechanisms with auxiliary parallelograms, the design of reactionless mechanisms with flywheels, and the design of reactionless mechanisms by symmetrical structure design.
This book provides background and guidance on the use of the structural hot-spot stress approach to fatigue analysis. The book also offers Design S-N curves for use with the structural hot-spot stress for a range of weld details, and presents parametric formulas for calculating stress increases due to misalignment and structural discontinuities. Highlighting the extension to structures fabricated from plates and non-tubular sections. The structural hot-spot stress approach focuses on cases of potential fatigue cracking from the weld toe and it has been in use for many years in tubular joints. Following an explanation of the structural hot-spot stress, its definition and its relevance to fatigue, the book describes methods for its determination. It considers stress determination from both finite element analysis and strain gauge measurements, and emphasizes the use of finite element stress analysis, providing guidance on the choice of element type and size for use with either solid or shell elements. Lastly, it illustrates the use of the recommendations in four case studies involving the fatigue assessment of welded structures using the structural hot-spot stress
This book collects several examples of research in machining processes. Chapter 1 provides information on polycrystalline diamond tool material and its emerging applications. Chapter 2 is dedicated to the analysis of orthogonal cutting experiments using diamond-coated tools with force and temperature measurements. Chapter 3 describes the estimation of cutting forces and tool wear using modified mechanistic models in high performance turning. Chapter 4 contains information on cutting under gas shields for industrial applications. Chapter 5 is dedicated to the machinability of magnesium and its alloys. Chapter 6 provides information on grinding science. Finally, chapter 7 is dedicated to flexible integration of shape and functional modelling of machine tool spindles in a design framework.
This book contains papers on a wide range of topics in the area of kinematics, mechanisms, robotics, and design, addressing new research advances and innovations in design education. The content is divided into five main categories headed 'Historical Perspectives', 'Kinematics and Mechanisms', 'Robotic Systems', 'Legged Locomotion', and 'Design Engineering Education'. Contributions take the form of survey articles, historical perspectives, commentaries on trends on education or research, original research contributions, and papers on design education. This volume celebrates the achievements of Professor Kenneth Waldron who has made innumerable and invaluable contributions to these fields in the last fifty years. His leadership and his pioneering work have influenced thousands of people in this discipline.
This book constitutes the refereed post-proceedings of the 7th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2014, held in Chamonix, France, in February 2014. The 20 revised full papers were carefully reviewed and selected from numerous submissions. The papers cover the following topics: micro-assembly processes and systems ranging from desktop factory automation and packaging of MEMS to self-assembly processes and platforms; handling and manipulation, including flexible gripper systems, fixturing and high precision actuators; tolerance management and error-compensation techniques applied at different scales of precision assembly; metrology and quality control; intelligent assembly control; process selection, modelling and planning.
This book summarizes the author's lifetime achievements, offering new perspectives and approaches in the field of metal cutting theory and its applications. The topics discussed include Non-Euclidian Geometry of Cutting Tools, Non-free Cutting Mechanics and Non-Linear Machine Tool Dynamics, applying non-linear science/complexity to machining, and all the achievements and their practical significance have been theoretically proved and experimentally verified.
This contributed volume presents the research results of the program "Small machine tools for small work pieces" (SPP 1476), funded by the German Research Society (DFG). The book contains the final report of the priority program, presenting novel approached for size-adapted, reconfigurable micro machine tools. The target audience primarily comprises research experts and practitioners in the field of micro machine tools, but the book may also be beneficial for graduate students.
This book is a compilation of the recent progress on friction stir technologies including high-temperature applications, industrial applications, dissimilar alloy/materials, lightweight alloys, simulation, control, characterization, and derivative technologies. The volume offers a current look at friction stir welding technology from application to characterization and from modeling to R&D. Contributions document advances in application, controls, and simulation of the friction stir process to aid researchers in seeing the current state-of-the-art.
This proceedings volume presents the latest research from the worldwide mass customization & personalization (MCP) community bringing together new thoughts and results from various disciplines within the field. The chapters are based on papers from the MCPC 2017. The book showcases research and practice from authors that see MCP as an opportunity to extend or even revolutionize current business models. The current trends of Industrie 4.0, digital manufacturing, and the rise of smart products allow for a fresh perspective on MCP: Customization 4.0. The book places a new set of values in the centre of the debate: a world with finite resources, global population growth, and exacerbating climate change needs smart thinking to engage the most effective capabilities and resources. It discusses how Customization 4.0 fosters sustainable development and creates shared value for companies, customers, consumers, and the society as a whole. The chapters of this book are contributed by a wide range of specialists, offering cutting-edge research, as well as insightful advances in industrial practice in key areas. The MCPC 2017 has a strong focus on real life MCP applications, and this proceedings volume reflects this. MCP strategies aim to profit from the fact that people are different. Their objective is to turn customer heterogeneities into opportunities, hence addressing "long tail" business models. The objective of MCP is to provide goods and services that best serve individual customers' needs with near mass production efficiency. This proceedings volume highlights the interdisciplinary work of thought leaders, technology developers, and researchers with corporate entrepreneurs putting these strategies into practice. Chapter 24 is open access under a CC BY 4.0 license via link.springer.com.
Maximizing reader insights into the latest research findings and applications of Electrically-Assisted Forming (EAF) - whereby metals are formed under an electric current field - this book explains how such a process produces immediate improved formability of metals beyond the extent of thermal softening, and allows metals to be formed to greater elongation with lower mechanical energy as well as allowing for lightweight brittle metals such as magnesium and titanium to be formed without external heating or annealing, enabling the more effective use of these lightweight metals in design. Including case studies that illustrate and support the theoretical content and real-world applications of the techniques discussed, this book also serves to enrich readers understanding of the underlying theories that influence electro-plastic behaviour. The authors have extensive experience in studying Electrically-Assisted Forming and have written extensively with publications including experimental works, technical briefs, conference proceedings, journal articles, and analytical models.
This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.
The papers in this volume present recent and highly relevant topics in the fields of production research as 3D printing, additive manufacturing processes, agile product development, change dynamics in companies, configurable material systems, data analysis in process optimization, future technologies with high potential in value creation, global production, learning production systems, production of the future, organization of assemblies, resource efficiency in production, robotics in assembly, and technology trends in machine tools. Researchers and practitioners in the field of mechanical engineering and production technology will benefit from this content.
Presenting the gradual evolution of the concept of Concurrent Engineering (CE), and the technical, social methods and tools that have been developed, including the many theoretical and practical challenges that still exist, this book serves to summarize the achievements and current challenges of CE and will give readers a comprehensive picture of CE as researched and practiced in different regions of the world. Featuring in-depth analysis of complex real-life applications and experiences, this book demonstrates that Concurrent Engineering is used widely in many industries and that the same basic engineering principles can also be applied to new, emerging fields like sustainable mobility. Designed to serve as a valuable reference to industry experts, managers, students, researchers, and software developers, this book is intended to serve as both an introduction to development and as an analysis of the novel approaches and techniques of CE, as well as being a compact reference for more experienced readers.
This book focuses on the current state of the art of the novel cold spray process. Cold spray is a solid state metal consolidation process, which allows engineers to tailor surface and shape properties by optimizing process parameters, powder characteristics and substrate conditions for a wide variety of applications that are difficult or impossible by other techniques. Readers will benefit from this book's coverage of the commercial evolution of cold spray since the 1980's and will gain a practical understanding of what the technology has to offer.
This book introduces three key issues: (i) development of a gradient-free method to enable multi-objective self-optimization; (ii) development of a reinforcement learning strategy to carry out self-learning and finally, (iii) experimental evaluation and validation in two micromachining processes (i.e., micro-milling and micro-drilling). The computational architecture (modular, network and reconfigurable for real-time monitoring and control) takes into account the analysis of different types of sensors, processing strategies and methodologies for extracting behavior patterns from representative process' signals. The reconfiguration capability and portability of this architecture are supported by two major levels: the cognitive level (core) and the executive level (direct data exchange with the process). At the same time, the architecture includes different operating modes that interact with the process to be monitored and/or controlled. The cognitive level includes three fundamental modes such as modeling, optimization and learning, which are necessary for decision-making (in the form of control signals) and for the real-time experimental characterization of complex processes. In the specific case of the micromachining processes, a series of models based on linear regression, nonlinear regression and artificial intelligence techniques were obtained. On the other hand, the executive level has a constant interaction with the process to be monitored and/or controlled. This level receives the configuration and parameterization from the cognitive level to perform the desired monitoring and control tasks.
This book details how safety (i.e. the absence of unacceptable risks) is ensured in areas where potentially explosive atmospheres (ATEX) can arise. The book also offers readers essential information on how to comply with the newest (April 2016) EU legislation when the presence of ATEX cannot be avoided. By presenting general guidance on issues arising out of the EU ATEX legislation - especially on zone classification, explosion risk assessment, equipment categorization, Ex-marking and related technical/chemical aspects - the book provides equipment manufacturers, responsible employers, and others with the essential knowledge they need to be able to understand the different - and often complicated - aspects of ATEX and to implement the necessary safety precautions. As such, it represents a valuable resource for all those concerned with maintaining high levels of safety in ATEX environments.
This book provides fundamental understanding and practical application of characteristics of flexural motion in the assessment of the weld size and coating thickness. Some formulations of heat transfer and flexural motion are introduced while displacement and load correlation are used to estimate elastic modules and the size of the heat affected zone as well as the coating thickness. The case studies presented give a practical understanding of weld size and coating thickness characterizations. |
![]() ![]() You may like...
Applications of Paleoenvironmental…
Kaarina Weckstroem, Krystyna M Saunders, …
Hardcover
R3,431
Discovery Miles 34 310
Adult Behavior Therapy Casebook
Cynthia G. Last, Michel Hersen
Hardcover
R2,647
Discovery Miles 26 470
|