![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > General
This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane®), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated. Â
Research Laboratory Safety explains the most important prerequisite when working in a laboratory: Knowing the potential hazards of equipment and the chemical materials to be employed. Students learn how to assess and control risks in a research laboratory and to identify a possible danger. An approach on the hazard classes such as physical, chemical, biological and radiation hazards is given and exercises to each class prepare for exams.
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Formulations starts with a general introduction, explaining interaction forces between particles and droplets, self-assembly systems, polymeric surfactants and nanoemulsions. The second part covers the industrial examples ranging from foams, soaps over to hair care, sunscreen and make-up products. Combines information needed by formulation chemists as well as researchers in the cosmetic industry due the increasing number of products.
A complete reference for fermentation engineers engaged in commercial chemical and pharmaceutical production, "Fermentation and Biochemical Engineering Handbook" emphasizes the operation, development and design of manufacturing processes that use fermentation, separation and purification techniques. Contributing authors from companies such as Merck, Eli Lilly, Amgen and Bristol-Myers Squibb highlight the practical aspects of the processes-data collection, scale-up parameters, equipment selection, troubleshooting, and more. They also provide relevant perspectives for the different industry sectors utilizing fermentation techniques, including chemical, pharmaceutical, food, and biofuels. New material in the third edition covers topics relevant to
modern recombinant cell fermentation, mammalian cell culture, and
biorefinery, ensuring that the book will remain applicable around
the globe. It uniquely demonstrates the relationships between the
synthetic processes for small molecules such as active ingredients,
drugs and chemicals, and the biotechnology of protein, vaccine,
hormone, and antibiotic production. This major revision also
includes new material on membrane pervaporation technologies for
biofuels and nanofiltration, and recent developments in
instrumentation such as optical-based dissolved oxygen probes,
capacitance-based culture viability probes, and in situ real-time
fermentation monitoring with wireless technology. It addresses
topical environmental considerations, including the use of new
(bio)technologies to treat and utilize waste streams and produce
renewable energy from wastewaters. Options for bioremediation are
also explained.
The book summarizes the latest research and developments in dairy biotechnology and engineering. It provides a strategic approach for readers relating to fundamental research and practical work with lactic acid bacteria. The book covers every aspect from identification, ecology, taxonomy and industrial use. All contributors are experts who have substantial experience in the corresponding research field. The book is intended for researchers in the human, animal, and food sciences related to lactic acid bacteria. Dr. Heping Zhang is a Professor at the Key Laboratory of Dairy Biotechnology and Engineering Ministry of Education, Inner Mongolia Agricultural University, China. Dr. Yimin Cai works in Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Japan.
This revised 2nd edition of Engineering Risk Management presents engineering aspects of risk management. After an introduction to potential risks the authors presents management principles, risk diagnostics, analysis and treatments followed by examples of practical implementation in chemistry, physics and emerging technologies such as nanoparticles.
The book will be focused on the three most important aspects of food packaging: Modeling, Materials and Packaging Strategies. The modeling section will provide a complete overview of mass transport phenomena in polymers intended for food packaging applications. The materials section will cover the most interesting problem-solving solutions in the field of food packaging, i.e., low environmental impact active films with antimicrobial activity. Lastly, the packaging section will provide an overview of the most recent approaches used to prolong the shelf life of several food products.
Prospective Isolation and Characterization of Human Bone Marrow-Derived MSCs, by A. Harichandan, K. Sivasubramaniyan, H.-J. Buhring Urine as a Source of Stem Cells, by Christina Benda, Ting Zhou, Xianming Wang, Weihua Tian, Johannes Grillari, Hung-Fat Tse, Regina Grillari-Voglauer, Duanqing Pei, Miguel A. Esteban Expansion of Mesenchymal Stem/Stromal Cells under Xenogenic-Free Culture Conditions, by Sven Kinzebach, Karen Bieback Adipose-Derived Mesenchymal Stem Cells: Biology and Potential Applications, by Danielle Minteer, Kacey G Marra, J Peter Rubin Potential for Osteogenic and Chondrogenic Differentiation of MSC, by Antonina Lavrentieva, Tim Hatlapatka, Anne Neumann, Birgit Weyand, Cornelia Kasper Potential for Neural Differentiation of Mesenchymal Stem Cells, by Letizia Ferroni, Chiara Gardin, Ilaria Tocco, Roberta Epis, Alessandro Casadei, Vincenzo Vindigni, Giuseppe Mucci, Barbara Zavan Migratory Properties of Mesenchymal Stem Cells, by Thomas Dittmar, Frank Entschladen Dissecting Paracrine Effectors for Mesenchymal Stem Cells, by Stefania Bruno, Federica Collino, Ciro Tetta, Giovanni Camussi Proteomics Approaches in the Identification of Molecular Signatures of Mesenchymal Stem Cells, by Yin Xiao, Jiezhong Chen Does the Adult Stroma Contain Stem Cells?, by Richard Schafer
"Modern Solid State Fermentation: Theory and Practice" covers state-of-the-art studies in the field of solid state fermentation (SSF). In terms of different characteristics of microbial metabolites, this book catalogs SSF into two main parts: anaerobic and aerobic SSF. Based on the principles of porous media and strategies of process control and scale-up, which are introduced in the book, it not only presents a well-founded explanation of essence of solid state fermentation, but also their influence on microbial physiology. In addition, due to the rapid development of this field in recent years, inert support solid state fermentation is also examined in detail. At last, the modern solid state fermentation technology platform is proposed, which will be used in solid biomass bioconversion. This book is intended for biochemists, biotechnologists and process engineers, as well as researchers interested in SSF. Dr. Hongzhang Chen is a Professor at Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
This volume surveys recent research on autonomous sensor networks from the perspective of enabling technologies that support medical, environmental and military applications. State of the art, as well as emerging concepts in wireless sensor networks, body area networks and ambient assisted living introduce the reader to the field, while subsequent chapters deal in depth with established and related technologies, which render their implementation possible. These range from smart textiles and printed electronic devices to implanted devices and specialized packaging, including the most relevant technological features. The last four chapters are devoted to customization, implementation difficulties and outlook for these technologies in specific applications.
Learn Chemical Reaction Engineering through Reasoning, Not Memorization "Essentials of Chemical Reaction Engineering "is the complete, modern introduction to chemical reaction engineering for today's undergraduate students. Starting from the strengths of his classic "Elements of Chemical Reaction Engineering, Fourth Edition, "in this volume H. Scott Fogler added new material and distilled the essentials for undergraduate students. Fogler's unique way of presenting the material helps students gain a deep, intuitive understanding of the field's essentials through reasoning, using a CRE algorithm, not memorization. He especially focuses on important new energy and safety issues, ranging from solar and biomass applications to the avoidance of runaway reactions. Thoroughly classroom tested, this text reflects feedback from hundreds of students at the University of Michigan and other leading universities. It also provides new resources to help students discover how reactors behave in diverse situations-including many realistic, interactive simulations on DVD-ROM. "New Coverage Includes"
With increasing energy prices and the drive to reduce CO2 emissions, food industries are challenged to find new technologies in order to reduce energy consumption, to meet legal requirements on emissions, product/process safety and control, and for cost reduction and increased quality as well as functionality. Extraction is one of the promising innovation themes that could contribute to sustainable growth in the chemical and food industries. For example, existing extraction technologies have considerable technological and scientific bottlenecks to overcome, such as often requiring up to 50% of investments in a new plant and more than 70% of total process energy used in food, fine chemicals and pharmaceutical industries. These shortcomings have led to the consideration of the use of new "green" techniques in extraction, which typically use less solvent and energy, such as microwave extraction. Extraction under extreme or non-classical conditions is currently a dynamically developing area in applied research and industry. Using microwaves, extraction and distillation can now be completed in minutes instead of hours with high reproducibility, reducing the consumption of solvent, simplifying manipulation and work-up, giving higher purity of the final product, eliminating post-treatment of waste water and consuming only a fraction of the energy normally needed for a conventional extraction method. Several classes of compounds such as essential oils, aromas, anti-oxidants, pigments, colours, fats and oils, carbohydrates, and other bioactive compounds have been extracted efficiently from a variety of matrices (mainly animal tissues, food, and plant materials). The advantages of using microwave energy, which is a non-contact heat source, includes more effective heating, faster energy transfer, reduced thermal gradients, selective heating, reduced equipment size, faster response to process heating control, faster start-up, increased production, and elimination of process steps. This book will present a complete picture of the current knowledge on microwave-assisted extraction (MAE) of bioactive compounds from food and natural products. It will provide the necessary theoretical background and details about extraction by microwaves, including information on the technique, the mechanism, protocols, industrial applications, safety precautions, and environmental impacts.
This book covers the general engineering knowledge required by candidates for the Department of Transport's Certificates of Competency in Marine Engineering, Class One and Class Two. The text is updated throughout in this third edition, and new chapters have been added on production of fresh water and on noise and vibration. Reference is also provided to up-to-date papers and official publications on specialized topics. These updates ensure that this little volume will continue to be a useful pre-examination and revision text. - Marine Engineers Review, January 1992
Hydrogels are a particular class of compounds of which the major constituent is wa- ter. In fact, water is present in the hydrogel up to 90% and is contained in a scaffold which is generally polymeric and obviously hydrophilic. As a result, hydrogels re- semble each other even though obtained from different polymers. Nevertheless, the polymeric matrix gives particular characteristics to the hydrogel leading to applica- tions in different fields. Water is the main element of the human body, thus hydrogels are excellent struc- tures to favourably shelter proteins, cells etc. , without altering their characteristics and properties. This is why hydrogels are mainly designed and synthesized for their usein thebiologicalfield;hence the name biohydrogels. Their propertiespoint totheir use as scaffolds for stem cells which has turned out to be a very promising technique for tissue and organ regeneration. For this reason their investigation falls within the Biomaterials Science. Paradoxically, the conceptual simplicity of hydrogelsupto nowhas led to a super- ficialstudy of their chemistry, chemical physics and mechanics preventing their wider application in the human body due to a lack of knowledge of biological component interactions. For example, it is not clear, yet, how to store hydrogels without alter- ing their characteristics. In fact, hydrogels re-hydrated after lyophylization or oven drying, generally show corrupted properties once swollen in water, in comparison with their native counterparts.
This, the first of two volumes devoted to probability theory in physics, physical chemistry, and engineering, provides an introduction to the problem of the random walk and its applications. In its simplest form, the random walk describes the motion of an idealized drunkard and is a discrete analogue of the diffusion process. A thorough account is given of the theory of random walks on discrete spaces (lattices or networks) and in continuous spaces, including processed with random waiting times between steps. Applications discussed include dielectric relaxation, charge transport in the xerographic process, turbulent dispersion, diffusion through a medium with traps, laser speckle and the conformations of polymers in dilute solution. Prior knowledge of probability theory would be helpful, but not assumed. An extensive bibilography concludes the book.
Macromolecular drugs hold the promise of becoming new therapeutics for several major disorders, including cancer and cardiovascular disease. This incredible potential is explored in Macromolecular Drug Delivery, a volume which gives a wide-ranging overview of contemporary methods used in the field, and which addresses the limitations presented by a lack of safe and efficient drug delivery strategies. Chapters offer information on both in vitro and in vivo methods of macromolecular delivery, thus appealing to a broad scientific audience. Composed in the highly successful Methods in Molecular Biology (TM) series format, each chapter contains a brief introduction, step-by-step methods, a list of necessary materials, and a Notes section which shares tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Macromolecular Drug Delivery offers a platform for interdisciplinary collaboration, which should provide opportunities for new discoveries at the interface between disciplines. Ultimately, this cooperation will lead to the use of macromolecular drugs as novel diagnostic tools and, even more importantly, as a means to revolutionize the way we view and treat diseases.
This book evaluates and discusses the main sustainability challenges encountered in the production of biofuel and bio-products from oil palm biomass. It starts off with the emphasis on oil palm production, oil palm products recovery and oil palm wastes utilization. The simultaneous production of these bio-products for sustainable development is discussed. This is followed by the key factors defining the sustainability of biofuel and bio-product production from oil palm biomass. The environmental issues including ecological, life cycle assessment and environmental impact assessment of oil palm plantation, milling and refining for the production of biofuels and bio-products are presented. Socio-economic and thermodynamic analysis of the production processes are also evaluated using various sustainability assessment tools such as exergy. Lastly, methods of improving biofuel production systems for sustainable development are highlighted.
This is the only single authored text on biological polymers available for bioengineering and biomedical engineering students. The book describes the structure of polymers and how these molecules are put together to make the tissues of the body and also their role in surgical implants and in structural diseases. It provides essential reading for biomedical engineers, biologists, physicians, health care professionals and other biomedical researchers who are interested in understanding how physical forces affect the biology, physiology and pathophysiology of humans. The author is an expert on the effect of mechanical forces on extracellular matrix.
Tingyue Gu's second edition provides a comprehensive set of nonlinear multicomponent liquid chromatography (LC) models for various forms of LC, such as adsorption, size exclusion, ion-exchange, reversed-phase, affinity, isocratic/gradient elution and axial/radial flow LC. Much has advanced since the first edition of this book and the author's software, described here, is now used for teaching and research in 32 different countries. This book comes together with a complete software package with graphical user interface for personal computers, offered free for academic applications. Additionally, this book provides detailed methods for parameter estimation of mass transfer coefficients, bed voidage, particle porosity and isotherms. The author gives examples of how to use the software for predicitons and scale-up. In contrast to the first edition, authors do not need to deal with complicated math. Instead, they focus on how to obtain a few parameters for simulation and how to compare simulation results with experimental data. After reading the detailed descriptions in the book, a reader is able to use the simulation software to investigate chromatographic behavior without doing actual experiments. This book is aimed at readers who are interested in learning about LC behaviors and at those who want to scale up LC for preparative- and large-scale applications. Both academic personnel and industrial practitioners can benefit from the use of the book. This new edition includes: - New models and software for pellicular (cored) beads in liquid chromatography - Introduction of user-friendly software (with graphical user interface) - Detailed descriptions on how to use the software - Step-by-step instructions on parameter estimation for the models - New mass-transfer correlations for parameter estimation - Experimental methods for parameter estimation - Several actual examples using the model for product development and scale-up - Updated literature review
Aus den modernen Biowissenschaften, der Pharmazie und Medizin ist die instrumentelle Bioanalytik heute nicht mehr wegzudenken. Diese Disziplinen sind inzwischen ganz wesentlich charakterisiert durch immer leistungsstarkere Analysemethoden, die Vorgange auf molekularer Ebene im Detail sichtbar machen koennen. Dieses Buch vermittelt dem Leser auf leicht verstandliche und pragnante Weise Grundlagen, Anwendungsmoeglichkeiten und auch Grenzen der einzelnen bioanalytischen Techniken und versetzt ihn so in die Lage, kompetent A1/4ber die Anwendung einer bestimmten Methode fA1/4r ein gegebenes Problem zu entscheiden. Jedes Kapitel wird dabei durch praktische Beispiele abgerundet, die typische Fragestellungen illustrieren und mit den jeweiligen Techniken geloest werden koennen. Das Buch wendet sich an Studenten, Diplomanden und Doktoranden der Biotechnologie, Pharmazie, Biologie, Biochemie, Biophysik und Medizin.
Freezing time and freezing heat load are the two most important factors determining the economics of food freezers. This Brief will review and describe the principal methods available for their calculation. The methods can be classified into analytical methods, which rely on making physical simplifications to be able to derive exact solutions; empirical methods, which use regression techniques to derive simplified equations from experimental data or numerical calculations and numerical methods, which use computational techniques such as finite elements analysis to solve the complete set of equations describing the physical process. The Brief will evaluate the methods against experimental data and develop guidelines on the choice of method. Whatever technique is used, the accuracy of the results depends crucially on the input parameters such as the heat transfer coefficient and the product's thermal properties. In addition, the estimation methods and data for these parameters will be reviewed and their impacts on the calculations will be evaluated. Freezing is often accompanied by mass transfer (moisture loss, solute absorption), super cooling and nucleation and may take place under high pressure conditions; therefore methods to take these phenomena into account will also be reviewed.
A number of food engineering operations, in which heat is not used as a preserving factor, have been employed and are applied for preparation (cleaning, sorting, etc.), conversion (milling, agglomeration, etc.) or preservation (irradiation, high pressure processing, pulsed electric fields, etc.) purposes in the food industry. This book presents a comprehensive treatise of all normally used food engineering operations that are carried out at room (or ambient) conditions, whether they are aimed at producing microbiologically safe foods with minimum alteration to sensory and nutritive properties, or they constitute routine preparative or transformation operations. The book is written for both undergraduate and graduate students, as well as for educators and practicing food process engineers. It reviews theoretical concepts, analyzes their use in operating variables of equipment, and discusses in detail different applications in diverse food processes.
Biomarker discovery is an important area of biomedical research that may lead to significant breakthroughs in disease analysis and targeted therapy. Biomarkers are biological entities whose alterations are measurable and are characteristic of a particular biological condition. Discovering, managing, and interpreting knowledge of new biomarkers are challenging and attractive problems in the emerging field of biomedical informatics. This volumeis a collection of state-of-the-artresearch into the application of data mining to the discovery and analysis of new biomarkers. Presenting new results, models and algorithms, the included contributions focus on biomarker data integration, information retrieval methods, and statistical machine learning techniques. This volume is intended for students, and researchers in bioinformatics, proteomics, and genomics, as wellengineers and applied scientistsinterested in the interdisciplinary application of data mining techniques."
Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics, pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations. |
![]() ![]() You may like...
ESD from A to Z - Electrostatic…
John M. Kolyer, Donald Watson
Hardcover
Model Generation in Electronic Design
Jean-Michel Berge, Oz Levia, …
Hardcover
R3,121
Discovery Miles 31 210
Algorithmic Foundations of Robotics XII…
Ken Goldberg, Pieter Abbeel, …
Hardcover
R3,252
Discovery Miles 32 520
Approaching Human Performance - The…
Markus Grebenstein
Hardcover
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
![]()
|