![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > General
Industrial Catalysis provides an excellent introduction to catalytic principles and processes, addressing the applications of inorganic-, organic- and biocatalysts in industrial chemistry. Each chapter is focussed on one catalytic process and discusses its life cycle from source materials, catalyst synthesis, the catalytic process, lifetime and recovery. The book also includes a comprehensive overview on industrial processes employing catalysis.
This book provides a thorough guidance on maximizing the performance of utility systems in terms of sustainability. It covers general structure, typical components and efficiency trends, and applications such as top-level analysis for steam pricing and selection of processes for improved heat integration. Examples are provided to illustrate the discussed models and methods to give sufficient learning experience for the reader.
Carbon dioxide reduction is a key research challenge in the global mission to reduce CO2 emissions. The process presents a unique challenge in that it can produce several different products, presenting the user with the challenge of selectively and efficiently producing on single useful material. This book presents an introduction to the field, covering the chemical reactions involved, the range of innovative materials and reactor designs most recently developed, and the future targets that need to be met.
Water resource systems and technologies are important fields in engineering today. This book will discuss various areas on water resource management. Topics discussed include water harvesting techniques, waste water purification, and urban water systems as well as concrete, pavement, and mortar stabilizers, and earthquake resistance technologies and how they relate to water management systems.
This book is a concise and up-to-date introduction to the topic of photocatalysis. It covers the fundamentals of photocatalysis, design of photoreactors and modelling and simulations for photoreaction. Also, industrial applications such as hydrogen production, water disinfection, degradation of air pollutants, pesticides and pharmaceuticals are described.
Offers the reader a modern approach to reactor description and modelling. Using the widely applied numerical language MATLAB, it provides the reader with categorized groups of general code for a wide variety of chemical reactors. Being designed as a tool for researchers and professionals, the code can easily be extended and adapted by the reader to their own specific problems.
This new edition covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. Supplementary material on the non-equilibrium statistical operator (NSO) method for calculating kinetics coefficients describing spintronics is included in this new addition. This book is an easy-to-read text describing the fundamentals of the field.
Das einzige Lehrbuch, nun in der 2. Auflage, das die Thermodynamik auf praktische Probleme der Verfahrenstechnik anwendet, unzahlige Beispiele mit Loesungen, Schatzmethoden zu thermophysikalischen Eigenschaften usw. prasentiert.Auch fur Ingenieure bei Chemiefirmen von Interesse.
The author describes the history of industrial safety and the emergence of process safety as an engineering discipline in the 20th century. The book sheds light on the difference between: employers and workers.
The two-volume work presents applications of integrated membrane operations in agro-food productions with significant focus on product quality, recovery of high added-value compounds, reduction of energy consumption and environmental impact. Volume 1. Dairy, Wine and Oil Processing. Volume 2. Wellness Ingredients and Juice Processing.
Considering the deleterious impacts of fossil fuels on the environmental and natural ecosystems, it has become imperative to make a paradigm shift toward renewable fuels, chemicals, and materials. The exhaustive everyday usage of fossil fuels and processed petrochemical products are the leading causes for the increase in greenhouse gas emissions, global warming, climate changes, acid rain, ozone layer depletion, pollution of air, water, and soil as well as for the accumulation of nonbiodegradable materials in the soil and oceans. On the contrary, biofuels, biochemicals, and biomaterials derived from renewable wastes such as nonedible plant biomass (e.g., agricultural and forestry biomass), energy crops, microalgae, municipal solid waste, sewage sludge, and other biogenic residues seem to be carbon neutral. Therefore, the global interest in biorefining technologies, especially thermochemical and biological conversion processes, is gaining momentum in academic and industrial perspectives. Progressive Thermochemical Biorefining Technologies offers all-inclusive coverage of the most crucial topics as follows: State-of-the-art information on the production and utilization of biofuels through thermochemical biorefining technologies Conversion of waste biomass through pyrolysis, liquefaction, torrefaction, carbonization, gasification, reforming, and other clean technologies Waste-to-energy/chemical generation Fuel upgrading technologies Techno-economic analysis and life-cycle assessment of biorefining processes Specifically designed to be instantly applicable, this volume serves as a reference book for undergraduate and graduate students, scientific investigators, and research scholars working in the areas relating to energy and fuels.
The editors and authors, with backgrounds in academia and industry, tie together recent and established technologies for the upcoming change to sustainable industrial chemistry. The extensive worldwide activities towards that goal are exemplified with a series of green processes. Some of these processes are already commercially applied (squalene to squalane, hydraulic fluids from vegetable oils, biosourced polycarbonates), others are ready for a large scale implementation (glycerol to acrylic acid, biosourced acrylonitrile and levulinic acid, polyamides from fatty nitriles-esters hydrogenation, butadiene from bioethanol) or are being developed (cyclic carbonates from epoxides, selective pyrolysis of biomass). This book is an indispensable source for the researchers and professionals who work for a greener chemical industry. The chapters have been arranged to guide students through the design of new processes for more sustainable chemistry, using case studies as examples.
This book is essential reading for scientists and students interested in both organic and inorganic chemical technology. The authors cover the production of chemical reagents as well as trends from adjacent fields including biotechnology and process simulation. Chemical Technologies and Processes is of interest to chemical engineers, materials scientists, as well as chemists in both academia and industry.
This book illustrates theories in photovoltaic power generation, and focuses on the application of photovoltaic system, such as on-grid and off-grid system optimization design. The principle of the solar cell and manufacturing processes, the design and installation of PV system are extensively discussed in the book, making it an essential reference for graduate students in photovoltaic field and industrial engineers.
This book discusses methods for the assessment of energetic compounds through heat of detonation, detonation pressure, velocity and temperature, Gurney energy and power. The authors focus on the detonation pressure and detonation velocity of non-ideal aluminized energetic compounds. This 2nd Edition includes an updated and improved presentation of simple, reliable methods for the design, synthesis and development of novel energetic compounds.
This book illustrates how models of chemical reactors are built up in a systematic manner, step by step. The authors also outline how the numerical solution algorithms for reactor models are selected, as well as how computer codes are written for numerical performance, with a focus on MATLAB and Fortran. Examples solved in MATLAB and simulations performed in Fortran are included for demonstration purposes.
The book supplements "Guidelines for Chemical Process Quantitative Risk Analysis" by providing the failure rate data needed to perform a chemical process quantitative risk analysis.
This book presents a complete picture of the current state-of-the-art in alternative and green solvents used for laboratory and industrial natural product extraction in terms of the latest innovations, original methods and safe products. It provides the necessary theoretical background and details on extraction, techniques, mechanisms, protocols, industrial applications, safety precautions and environmental impacts. This book is aimed at professionals from industry, academicians engaged in extraction engineering or natural product chemistry research, and graduate level students. The individual chapters complement one another, were written by respected international researchers and recognized professionals from the industry, and address the latest efforts in the field. It is also the first sourcebook to focus on the rapid developments in this field.
Food Science and Technology: Trends and Future Prospects presents different aspects of food science i.e., food microbiology, food chemistry, nutrition, process engineering that should be applied for selection, preservation, processing, packaging, and distribution of quality food. The authors focus on the fundamental aspects of food and also highlight emerging technology and innovations that are changing the food industry. The chapters are written by leading researchers, lecturers, and experts in food chemistry, food microbiology, biotechnology, nutrition, and management. This book is valuable for researchers and students in food science and technology and it is also useful for food industry professionals, food entrepreneurs, and farmers.
This title presents a detailed overview on the full range of hazard categories and the associated risks of chemicals. It provides a basic introduction into toxicology, ecotoxicology and environmental behavior and enables all who perform precise chemical analysis to handle substances according to their intrinsic properties such as physical-chemical, environmental, ecological and toxicological hazards.
Polymers are converted into finished products through a series of steps which include mixing in additives and various types of forming. Following an introduction to polymer science and its importance to various fields, the author describes these processes from a practical, application-oriented perspective. Global suppliers of raw materials, machinery and equipment are also given, making this book an invaluable resource for industry practitioners.
This textbook summarizes the fundamentals of mass balance relevant for chemical engineers and an easy and comprehensive manner. Plenty of example calculations, schemes and flow diagrams facilitate the understanding. Case studies from relevant topics such as sustainable chemistry illustrate the theory behind current applications.
This book provides a framework for the development of sustainable bioprocesses. It includes methods for modeling and assessing both the economic and environmental aspects of biotechnological processes and illustrates their application in a series of case studies covering a broad range of products. The book: provides, in four chapters, an introduction to bioproducts and bioprocesses and the unit operations involved in manufacturing, as well as bioprocess modeling in combination with economic and environmental assessment methods; cuts across multiple process industries, including pharmaceutical, biochemicals, chemicals and food production; addresses risk and uncertainty analysis which are particularly important in early process and product development; presents a unique set of case examples from various parts of biotechnology that improve the understanding of this technology and provide a starting point for developing a specific model. The CD-ROM included contains the process models described in the text. All process model examples are implemented into SuperPro Designer a. The models are selected as characteristic examples of major bioprocess applications including bulk bio-chemicals, fine chemicals, enzymes, low and high molecular weight pharmaceuticals. Topics covered are: Citric Acid, Pyruvic Acid, L-Lysine, Riboflavin - Vitamin B2, α-Cyclodextrin, Penicillin V, Recombinant Human Serum Albumin, Recombinant Human Insulin; Monoclonal Antibodies, α-1-Antitrypsin from Transgenic Plant Cell Suspension Cultures and Plasmid DNA production. These examples provide a hands-on-approach, which will be useful to both students and professionals already working in bioprocessindustries. This book provides an integrating framework for the student in chemical and biochemical engineering and the scientist and engineer engaged in process development working in the biochemical, chemical and process industries, as well as biologists, chemists, environmental managers and business economists. The authors acknowledge the sponsorship of the Deutsche Bundesstiftung Umwelt, Osnabruck, Germany.
This book provides the methods, problems and tools necessary for process control engineering. This comprises process knowledge, sensor system technology, actuators, communication technology and logistics, as well as the design, construction, and operation of control systems. Beyond the traditional field of process engineering, the authors apply the same principles to biomedical processes, energy production and management of environmental issues.
Completely revised, updated, and enlarged, this second edition now contains a subchapter on biorecognition assays, plus a chapter on bioprocess control added by the new co-author Jun-ichi Horiuchi, who is one of the leading experts in the field. The central theme of the textbook remains the application of chemical engineering principles to biological processes in general, demonstrating how a chemical engineer would address and solve problems. To create a logical and clear structure, the book is divided into three parts. The first deals with the basic concepts and principles of chemical engineering and can be read by those students with no prior knowledge of chemical engineering. The second part focuses on process aspects, such as heat and mass transfer, bioreactors, and separation methods. Finally, the third section describes practical aspects, including medical device production, downstream operations, and fermenter engineering. More than 40 exemplary solved exercises facilitate understanding of the complex engineering background, while self-study is supported by the inclusion of over 80 exercises at the end of each chapter, which are supplemented by the corresponding solutions. An excellent, comprehensive introduction to the principles of biochemical engineering. |
You may like...
Sustainable Technologies for Remediation…
Mohammad Hadi Dehghani, Rama Rao Karri, …
Paperback
R4,540
Discovery Miles 45 400
Advances in Synthesis Gas: Methods…
Mohammad Reza Rahimpour, Mohammad Amin Makarem, …
Paperback
R4,540
Discovery Miles 45 400
Technological Advancements in Product…
Mihir Kumar Purkait, Dibyajyoti Haldar, …
Paperback
R4,534
Discovery Miles 45 340
The Biodiesel Handbook, Second Edition
Gerhard Knothe, Jon Van Gerpen
Paperback
R3,085
Discovery Miles 30 850
Current Developments in Biotechnology…
Giorgio Mannina, Ashok Pandey, …
Paperback
R4,543
Discovery Miles 45 430
Chemical Engineering: Solutions to the…
J.R. Backhurst, J.H. Harker, …
Paperback
R1,352
Discovery Miles 13 520
|