![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > General
Aero engine bearing chambers are complex machine elements inside the engines, supporting up to three concentric shafts on bearings. For safety reasons, the aero engines always employ rolling-element type bearings and therefore require a sufficient oil supply for lubrication in order to guarantee a reliable operation. As a consequence, a complex two-phase flow consisting of oil and sealing air governs the bearing chambers. A highly dynamic oil film, flowing along the chamber walls, plays a vital role to fulfill the tasks of cooling, lubricating and cleaning the bearing chambers. The design and optimization process of the bearing chambers requires a detailed understanding in order to accurately simulate the film behaviour inside the bearing chambers. Based on the earlier experimental investigations, it is known that near the scavenge off-take a relatively thick film exists. The numerical model to simulate these films must therefore take into account the elliptical behaviour of such films. Among the different models, the Volume Of Fluid (VOF) Model offers the best compromise between accuracy and efforts. However, preliminary attempts to model a fully developed and turbulent test case from literature revealed an unphysical pressure drop and velocity profile in the gas phase above the film flow. An inadequate turbulence modelling near the gas-liquid interface was identified as the problem source. The 2-Equation turbulence models (k- epsilon & k- omega) were extended to achieve a substantial improvement.
Das Buch ist Ubersicht und Hilfe fur den mit den Problemen des Apparatebaus bzw. -einsatzes befassten Personenkreis. Apparate sind "Herzstucke" von verfahrenstechnischen Anlagen, z.B. in der chemischen Industrie. Die wichtigsten Elemente dieser Apparate wie Umhullung, Abschluss, Anschluss und Absicherung werden mit Erklarung, Ableitung und Parameterstudien in Form von Diagrammen, Bildern sowie Durchrechnung von Beispielen behandelt. Die Darstellung ist in ihrer konsequenten Anordnung (Erklarung, Grundlagen, Messungen, Parameterstudien, Durchrechnung von Beispielen) an den Problemstellungen der Praxis orientiert. Besonderheiten und neue Methoden mit vielen Nachweisen und Ergebnissen zur Erganzung des Regelwerks - aber auch als Erganzungsvorschlage fur die Regelwerke - sind wegweisend."
This book deals with the design and integration of chemical processes, emphasizing the conceptual issues that are fundamental to the creation of the process. Chemical process design requires the selection of a series of processing steps and their integration to form a complete manufacturing system. The text emphasizes both the design and selection of the steps as individual operations and their integration. Also, the process will normally operate as part of an integrated manufacturing site consisting of a number of processes serviced by a common utility system. The design of utility systems has been dealt with in the text so that the interactions between processes and the utility system and interactions between different processes through the utility system can be exploited to maximize the performance of the site as a whole. Chemical processing should form part of a sustainable industrial activity. For chemical processing, this means that processes should use raw materials as efficiently as is economic and practicable, both to prevent the production of waste that can be environmentally harmful and to preserve the reserves of raw materials as much as possible. Processes should use as little energy as economic and practicable, both to prevent the build-up of carbon dioxide in the atmosphere from burning fossil fuels and to preserve reserves of fossil fuels. Water must also be consumed in sustainable quantities that do not cause deterioration in the quality of the water source and the long-term quantity of the reserves. Aqueous and atmospheric emissions must not be environmentally harmful, and solid waste to landfill must be avoided. Finally, all aspects of chemical processing must feature good health and safety practice. It is important for the designer to understand the limitations of the methods used in chemical process design. The best way to understand the limitations is to understand the derivations of the equations used and the assumptions on which the equations are based. Where practical, the derivation of the design equations has been included in the text. The book is intended to provide a practical guide to chemical process design and integration for undergraduate and postgraduate students of chemical engineering, practicing process designers and chemical engineers and applied chemists working in process development. Examples have been included throughout the text. Most of these examples do not require specialist software and can be performed on spreadsheet software. Finally, a number of exercises have been added at the end of each chapter to allow the reader to practice the calculation procedures.
The #1 Process Safety Guide, Now Extensively Updated for Current Industrial Processes, Systems, and Practices Process safety has seen a dramatic consolidation of concepts in the past few years. Chemical Process Safety, Fourth Edition, provides students and working engineers with the understanding necessary to apply these new concepts to safely design and operate any process. Long the definitive guide in the field, this edition fully reflects major recent advances in process safety technology and practice. Readers will find extensive new and updated coverage of relief sizing, hazards identification, risk assessment, and many other topics. Several chapters have been completely rewritten, and all are substantially modified. This textbook includes 50 new problems and solutions (mostly in SI units), and 25 new case histories. Safety culture Preventive and mitigative safeguards The CCPS 20 elements of Risk Based Process Safety (RBPS) Toxicology, industrial hygiene, and source models Hazardous material dispersion Fires, explosions, and concepts for preventing them Chemical reactivity Reliefs and relief sizing Hazards identification and evaluation Risk analysis and assessment, including Layer of Protection Analysis (LOPA) Safety strategies, procedures, designs, case histories, and lessons learned Crowl and Louvar link key academic concepts to modern industrial practice, making this guide invaluable for all engineering students and for all working engineers. Register your product for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Providing chemical engineering undergraduate and graduate students with a basic understanding of how separation of a mixture of molecules, macromolecules or particles is achieved, this textbook is a comprehensive introduction to the engineering science of separation. * Students learn how to apply their knowledge to determine the separation achieved in a given device or process * Real-world examples are taken from biotechnology, chemical, food, petrochemical, pharmaceutical and pollution control industries * Worked examples, elementary separator designs and chapter-end problems are provided, giving students a practical understanding of separation. The textbook systematically develops different separation processes by considering the forces causing the separation and how this separation is influenced by the patterns of bulk flow in the separation device. Readers will be able to take this knowledge and apply it to their own future studies and research in separation and purification. Online resources include solutions to the exercises and guidance for computer simulations.
For Senior-level and graduate courses in Biochemical Engineering, and for programs in Agricultural and Biological Engineering or Bioengineering. This concise yet comprehensive text introduces the essential concepts of bioprocessing--internal structure and functions of different types of microorganisms, major metabolic pathways, enzymes, microbial genetics, kinetics and stoichiometry of growth and product information--to traditional chemical engineers and those in related disciplines. It explores the engineering principles necessary for bioprocess synthesis and design, and illustrates the application of these principles to modern biotechnology for production of pharmaceuticals and biologics, solution of environmental problems, production of commodities, and medical applications.
This is an interdisciplinary book for biomimetic nanotechnology, that correlates the biology on the molecular scale with nanotechnology mimicking human senses and movement. The introduction provides the background in life science, chemistry, material science, and engineering needed to understand sensors and movement on the molecular level. The chapters discuss human movement, vision, smell and taste, hearing, and touch. Each chapter explains the sense or movement on the molecular level, then discusses nanotechnology that uses the human molecules or mimics the function of the human sense and movement on the nanoscale. This is an excellent book for senior undergraduates and graduate students in the life sciences, chemistry, material sciences, and engineering. It will also appeal to any reader with an interest in life sciences and nanotechnology.
Fourier Transform Infrared microspectroscopy (FTIR) was first developed by William Coblentz in 1905 for analytical purposes. It has been established as a powerful analytical method to analyze a wide range of materials. The most convenient way to analyze the molecular structure was to prepare KBr pellets with small amount of chemical species. Currently, the development of the Universal Attenuated Total Reflectance (UATR) allows the use of ZnSe-Diamond crystal to acquire FTIR spectra directly from the sample with no special preparation. These traditional FTIR analyses have been made with devices capable of performing single measurements, thus, providing a single IR spectrum of the sample. Recent major technological development in FTIR instrumentation was development of microscopes and imaging systems. These devices are now capable of imaging larger sample area, providing not only spectroscopic information but also spatial distributional information. In addition, the development of Focal Point Array (FPA) has made FTIR imaging an emerging area of chemical imaging research. The aim of this book is to summarize in a single document the research work that is being performed using UATR and IR imaging in selected emerging applications in plant materials and biological samples. This book provides the readers new knowledge, updates information, emerging applications, and understanding of the potential use of FTIR Microspectroscopy.
High-entropy alloys and their manufacturing are important fields in materials science and engineering today. This book will discuss various areas on high-entropy alloys. Topics discussed include processing routes, the effect of processing routes on structure and properties of the materials, the effect of alloying elements on structure and properties, as well as new emerging routes for materials preparation.
Although classical electromagnetic (EM) field theory is typically embedded in vector calculus and differential equations, many of the basic concepts and characteristics can be understood with precursory mathematical knowledge. Completely revised and updated, Basic Introduction to Bioelectromagnetics, Second Edition facilitates the process of interdisciplinary research by introducing life scientists to the basic concepts of EM fields.
This thesis presents a simple, yet highly effective surface engineering solution that uses non-covalent binding peptides to control the autophagy-inducing activity of nanomaterials and nanodevices. The author presents RE-1, a short synthetic peptide that sequence-specifically binds to lanthanide (LN) oxide and upconversion nanocrystals with high affinity, which was discovered using an innovative phage display approach. RE-1 effectively inhibits the autophagy-inducing activity and toxicity of these nanocrystals by forming a stable coating layer on the surface of the nanoparticles, and by reducing their sedimentation and cell interaction. RE- 1 and its variants provide a versatile tool for tuning cell interactions in order to achieve the desired level of autophagic response and are useful for the various diagnostic and therapeutic applications of LN-based nanomaterials and nanodevices.
In the 1980's sonochemistry was considered to be a rather restricted branch of chemistry involving the ways in which ultrasound could improve synthetic procedures, predominantly in heterogeneous systems and particularly for organometallic reactions. Within a few years the subject began to expand into other disciplines including food technology, environmental protection and the extraction of natural materials. Scientific interest grew and led to the formation of the European Society of Sonochemistry in 1990 and the launch of a new journal Ultrasonics Sonochemistry in 1994. The subject continues to develop as an exciting and multi-disciplinary science with the participation of not only chemists but also physicists, engineers and biologists. The resulting cross-fertilisation of ideas has led to the rapid growth of interdisciplinary research and provided an ideal way for young researchers to expand their knowledge and appreciation of the ways in which different sciences can interact. It expands scientific knowledge through an opening of the closed doors that sometimes restrict the more specialist sciences. The journey of exploration in sonochemistry and its expansion into new fields of science and engineering is recounted in "Sonochemistry Evolution and Expansion" written by two pioneers in the field. It is unlike other texts about sonochemistry in that it follows the chronological developments in several very different applications of sonochemistry through the research experiences of the two authors Tim Mason and Mircea Vinatoru. Designed for chemists and chemical engineers Written by two experts and practitioners in the subject Volume 1 covers the historical background and evolution of sonochemistry Volume 2 explains the wider applications and expansion of the subject VOLUME 1 Fundamentals and Evolution This volume traces the evolution of sonochemistry from the very beginning when the effects of acoustic cavitation were first reported almost as a scientific curiosity. The major developments of the subject from the 1980's are described by the authors who became active participants in the field during that period. A chapter is devoted to ultrasonically assisted extraction (UAE) which illustrates the different ways in which sonochemical technologies can be applied in both batch and flow modes leading to the development of large-scale processing. The chapter on environmental protection shows the wide range of applications of sonochemistry in this important field for both biological and chemical decontamination.
This textbook introduces the elementary basics of hydrochemistry with special focus on reaction equilibria in aquatic systems and their mathematical description. Topics discussed in this textbook include: structure and properties of water, concentration measures and activities, colligative properties, basics of chemical equilibria, gas-water partitioning, acid/base reactions, precipitation/dissolution, calco-carbonic equilibrium, redox reactions, complex formation, and sorption. Examples within the text as well as problems to be solved by the reader support the acquisition of knowledge. Complete and detailed solutions to the problems are given in a separate chapter.
Chemical Biophysics provides an engineering-based approach to biochemical system analysis for graduate-level courses on systems biology, computational bioengineering and molecular biophysics. It is the first textbook to apply rigorous physical chemistry principles to mathematical and computational modeling of biochemical systems for an interdisciplinary audience. The book is structured to show the student the basic biophysical concepts before applying this theory to computational modeling and analysis, building up to advanced topics and research. Topics explored include the kinetics of nonequilibrium open biological systems, enzyme mediated reactions, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems. End-of-chapter exercises range from confidence-building calculations to computational simulation projects.
This book presents the fundamentals of the reservoir and interfacial engineering. The book systematically starts with the basics of primary, secondary and tertiary (enhanced) oil recovery and emphasizes on the theory of microbial-enhanced oil recovery (MEOR) and its potential toward recovery of oil in place. Different approaches of MEOR such as in-situ, ex-situ, and integration of chemical- and microbial-enhanced oil recovery (EOR) are discussed in detail. This book highlights the link between the effectiveness of MEOR and the local reservoir conditions, crude oil characteristics, and indigenous microbial community. The latest implementations of MEOR across the globe are highlighted as case studies to outline the potential as well as the scope of MEOR. Given the topics covered, this book will be useful for professionals and researchers working in the areas of petroleum science and engineering, chemical engineering, biotechnology, bioengineering, and other related fields.
This new edition follows the original format, which combines a
detailed case study - the production of phthalic anhydride - with
practical advice and comprehensive background information. Guiding
the reader through all major aspects of a chemical engineering
design, the text includes both the initial technical and economic
feasibility study as well as the detailed design stages. Each
aspect of the design is illustrated with material from an
award-winning student design project.
This is a text designed to provide a frim grounding in mathematical methods for chemical engineering students and researchers in academia and industry. Mathematical Methods in Chemical Engineering builds on the reader's previous knowledge of calculus, differential equations, and linear algebra. Varma and Morbidelli offer an integrated treatment of linear operator theory from determinants through partial differential equations, and feature extensive chapters on both ordinary differential equations and perturbation methods. Numerous high-quality diagrams and examples from chemical engineering illustrate the textual material and enhance the reader's understanding of complex mathematical systems.
This volume explores the latest techniques and strategies used to study the field of peptide macrocycles. The chapters in this book ae organized into four parts: macrocycles synthesis, combinational library synthesis and screening, macrocycle characterization, and unique applications. Part One looks at a variety of peptide cyclization methodologies, and Part Two describes methods for the creation of peptide macrocycles libraries and their subsequent screening against biological targets of interest. Part Three discusses the study and characterization of peptide macrocycle-target interactions, and Part Four introduces unique applications for peptide macrocycles, from higher-order structure formation to post-synthetic functional modifications. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Peptide Macrocycles: Methods and Protocols is a valuable resource for both novice and expert researchers looking to learn more about this developing field.
This book presents recent advances in the use of ionic liquids in medicine and pharmaceutics with particular emphasis on addressing critical pharmaceutical challenges, including the low solubility, polymorphism, and bioavailability of drugs. It also provides insights into the development of the biologically functionalized ionic liquids suitable for medical and pharmaceutical applications. Ionic liquids have been used as potential solvents or materials in the fields of pharmaceutical drug delivery and formulations because of their unique and tunable physicochemical and biological properties. Readers find explanations of the diverse approaches to the application of ionic liquids in drug solubility, active pharmaceutical ingredient (API) formulation, and drug delivery systems, such as topical, transdermal, and oral delivery, with particular emphasis on recent developments. Particular attention is given to the development of ionic liquid-assisted effective drug delivery techniques for sparingly soluble or insoluble drug molecules. This book also discusses the biological activities of ionic liquids for possible applications in drug formulation and drug delivery systems. Scientists in disciplines such as chemistry, biology, and pharmaceutics find this book instructive and informative for developing ionic liquid-based drug formulations or drug delivery systems.
Many elements and inorganic compounds play an extraordinary role in daily life for numerous applications, e. g., construction materials, inorganic pigments, inorganic coatings, steel, glass, technical gases, energy storage and conversion materials, fertilizers, homogeneous and heterogeneous catalysts, photofunctional materials, semiconductors, superconductors, soft- and hard magnets, technical ceramics, hard materials, or biomedical and bioactive materials. The present book is written by experienced authors who give a comprehensive overview on the many chemical and physico-chemical aspects related to application of inorganic compounds and materials in order to introduce senior undergraduate and postgraduate students (chemists, physicists, materials scientists, engineers) into this broad field.
Many elements and inorganic compounds play an extraordinary role in daily life for numerous applications, e. g., construction materials, inorganic pigments, inorganic coatings, steel, glass, technical gases, energy storage and conversion materials, fertilizers, homogeneous and heterogeneous catalysts, photofunctional materials, semiconductors, superconductors, soft- and hard magnets, technical ceramics, hard materials, or biomedical and bioactive materials. The present book is written by experienced authors who give a comprehensive overview on the many chemical and physico-chemical aspects related to application of inorganic compounds and materials in order to introduce senior undergraduate and postgraduate students (chemists, physicists, materials scientists, engineers) into this broad field. |
You may like...
Chemical Engineering: Solutions to the…
J.R. Backhurst, J.H. Harker, …
Paperback
R1,352
Discovery Miles 13 520
Current Developments in Bioengineering…
Ashok Pandey, Sanjay P Govindwar, …
Paperback
R4,572
Discovery Miles 45 720
Current Developments in Biotechnology…
Ranjna Sirohi, Ashok Pandey, …
Paperback
R4,540
Discovery Miles 45 400
New and Future Developments in Microbial…
Harikesh Bahadur Singh, Anukool Vaishnav
Paperback
R4,540
Discovery Miles 45 400
The Biodiesel Handbook, Second Edition
Gerhard Knothe, Jon Van Gerpen
Paperback
R3,085
Discovery Miles 30 850
Microbial Resource Technologies for…
Joginder Singh, Deepansh Sharma
Paperback
R4,577
Discovery Miles 45 770
|