![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > General
Biodiesel: A Realistic Fuel Alternative for Diesel Engines describes the production and characterization of biodiesel. The book also presents current experimental research work in the field, including techniques to reduce biodiesel's high viscosity. Researchers in renewable energy, as well as fuel engineers, will discover a myriad of new ideas and promising possibilities.
This concise professional reference provides a fundamental framework for the design and operation of solid-state fermentation bioreactors, enabling researchers currently working at laboratory scale to scale up their processes. The authors survey bioreactor types in common use, and describe in depth how to plan a project, and model heat transfer phenomena. The book includes case studies, and a review of practical issues involved in bioreactor performance.
Kinetic Theory of Granular Gases provides an introduction to the
rapidly developing theory of dissipative gas dynamics - a theory
which has mainly evolved over the last decade. The book is aimed at
readers from the advanced undergraduate level upwards and leads on
to the present state of research. Throughout, special emphasis is
put on a microscopically consistent description of pairwise
particle collisions which leads to an impact-velocity-dependent
coefficient of restitution. The description of the many-particle
system, based on the Boltzmann equation, starts with the derivation
of the velocity distribution function, followed by the
investigation of self-diffusion and Brownian motion. Using
hydrodynamical methods, transport processes and self-organized
structure formation are studied.
All important aspects of thermophilic moulds such as systematics, ecology, physiology and biochemistry, production of extracellular and intracellular enzymes, their role in spoilage of stores products and solid and liquid waste management, and general and molecular genetics have been dealt with comprehensively by experts in this book which covers progress in the field over the last 30 years since the seminal book Thermophilic Fungi published by Cooney and Emerson in 1964. The experts have reviewed extensive literature on all aspects of thermophilic moulds in a very comprehensive manner. This book will be useful for graduates as well as post-graduate students of life sciences, mycology, microbiology and biotechnology, and as a reference book for researchers.
Air pollution, a major concern at the end of the 20th century, still remains a significant problem to be solved today. Traditionally, industrial waste gases have primarily been treated through physical or chemical methods. The search for new, efficient, and cost-effective alternative technologies has led to the development and, more recently, the improvement of gas phase bioreactors. This book is the first single text to provide a complete, comprehensive picture of all major biological reactors suitable for solving air pollution problems. The text describes the main features and covers the major aspects, from microbiological to engineering, as well as economic aspects, of the different types of bioreactors. The book also presents an in-depth review of the subject, from fundamental bench-scale research to industrial field applications related to the operation of full-scale systems successfully treating polluted air in Europe and the United States. Material dedicated to more conventional non-biological technologies has also been included, to provide a complete overview of the different alternative treatment processes. Audience: The different chapters have been written by international experts, as a result of a fruitful collaboration between European and American scientists and engineers. The resulting text is a high quality, valuable reference tool for a variety of readers, including graduate and postgraduate students, researchers, professors, engineers, and those professionals who are interested in environmental engineering and, more specifically, in innovative air pollution control technologies.
Site-specific mutagenesis of DNA, developed some thirty years ago, has proven to be one of the most important advances in biology. By allowing the site-specific replacement of any amino acid in a protein with one of the other nineteen amino acids, it ushered in the new era of "Protein Engineering". The field of protein engineering has, however, evolved rapidly since then and the last fifteen years have witnessed remarkable advances through the use of new chemical, biochemical and molecular biological tools towards the synthesis and manipulation of proteins. The chapters included in this book reflect the rapid evolution of protein engineering and its many applications in basic research, biotechnology, material sciences and therapy. This book will provide the reader with an introduction to state-of the-art concepts and methods and will be of use to anyone interested in the study of proteins, in academia as well as in industry.
This volume contains an archival record of the NATO Advanced Study Institute on Microfluidics Based Microsystems - Fundamentals and App- cations held in Ce ?me-Izmir, Turkey, August 23-September 4, 2009. ASIs are intended to be high-level teaching activity in scientific and technical areas of current concern. In this volume, the reader may find interesting chapters and various microsystems fundamentals and applications. As the world becomes increasingly concerned with terrorism, early - spot detection of terrorist's weapons, particularly bio-weapons agents such as bacteria and viruses are extremely important. NATO Public Diplomacy division, Science for Peace and Security section support research, Advanced Study Institutes and workshops related to security. Keeping this policy of NATO in mind, we made such a proposal on Microsystems for security. We are very happy that leading experts agreed to come and lecture in this important NATO ASI. We will see many examples that will show us Microfluidics usefulness for rapid diagnostics following a bioterrorism attack. For the applications in national security and anti-terrorism, microfluidic system technology must meet the challenges. To develop microsystems for security and to provide a comprehensive state-of-the-art assessment of the existing research and applications by treating the subject in considerable depth through lectures from eminent professionals in the field, through discussions and panel sessions are very beneficial for young scientists in the field."
A recently established technique termed pharming uses genetically modified plants and animals for the production of biopharmaceuticals. The present interdisciplinary study comprises an extended overview of the state of the art of pharming, as well as in depth analyses of the environmental risks and other ethical and legal issues of pharming. Public attitudes to pharming are investigated on the basis of an original survey in 15 countries worldwide. The study concludes with specific recommendations addressed towards science, industry and politics.
This book is the first to view the effects of development, aging, and practice on the control of human voluntary movement from a contemporary context. Emphasis is on the links between progress in basic motor control research and applied areas such as motor disorders and motor rehabilitation. Relevant to both professionals in the areas of motor control, movement disorders, and motor rehabilitation, and to students starting their careers in one of these actively developed areas.
Biofuel is a renewable energy source produced from natural materials. The benefits of biofuels over traditional petroleum fuels include greater energy security, reduced environmental impact, foreign exchange savings, and socioeconomic issues related to the rural sector. The most common biofuels are produced from classic food crops that require high-quality agricultural land for growth. However, bioethanol can be produced from plentiful, domestic, cellulosic biomass resources such as herbaceous and woody plants, agricultural and forestry residues, and a large portion of municipal and industrial solid waste streams. There is also a growing interest in the use of vegetable oils for making biodiesel. "Biofuels: Securing the Planet's Future Energy Needs" discusses the production of transportation fuels from biomass (such as wood, straw and even household waste) by Fischer-Tropsch synthesis. The book is an important text for students and researchers in energy engineering, as well as professional fuel engineers.
Biomimetic sensor technology is based on the use of biomaterials and information processing of a type used in biological systems. This book explores biomimetic sensors that can quantify taste--the electronic tongue--and smell, the electronic nose. The development of these sensors contribute to our understanding of the reception mechanisms in gustatory and olfactory systems. The author, a pioneer in the development of this new technology, begins by describing the principles of measurement and multivariate analysis. He details reception mechanisms in biological systems and several types of biosensors, including enzyme-immobilized membranes, SPR, the quartz resonance oscillator and IC technologies. Dedicated to the development of intelligent sensors and systems, this original volume is an essential resource for engineers working in this vital research area.
This book covers the principles of cryopreservation as they relate the preservation of viable cells and cell materials being developed for biopharmaceutical applications. Topics include: the principles of freezing and thawing cells, physiochemical phenomena, process and system design options, method selection considerations, preservation procedures, cryoprotectant additives, freeze-drying human live virus vaccines, and transport system selection criteria. Contributions from well-known experts such as Steven S. Lee, Thomas C. Pringle, William H. Siegel, Richard Wisniewski, and Fangdong Yin make this the single most important study available.
Thermodynamic Models for Chemical Engineering gives an overview of the main thermodynamic models used by engineers and in engineering researcher processes. These fall into two main families, equations of state and activity coefficient models. The book presents the state-of-the-art of purely predictive models.
Das Buch mit zahlreichen Praxisbeispielen befasst sich mit allen wesentlichen Fragen, die f r die Auslegung von Packungskolonnen bei der Rektifikation, Absorption und Strippung (Desorption) unter Vakuum, im Normal- und Druckbereich bis 100 bar, in der Abluft- und Abwassertechnik von Bedeutung sind. Es wird ein einheitliches, f r beliebige Einbauten geltendes Modell vorgestellt, mit dem die Flutpunktgeschwindigkeit, der Fl ssigkeitsinhalt und der Druckverlust im gesamten Belastungsbereich f r regellose F llk rper, geordnete F llk rperschichten, f r Rohrkolonnen und f r strukturierte Packungen mit unterschiedlicher Neigung der Str mungskan le vorausberechnet werden kann. Des Weiteren werden Berechnungsunterlagen f r ca. 200 F llk rper und Packungen zusammengestellt. Die zahlreichen Rechenbeispiele - insbesondere f r strukturierte Packungen - erleichtern die Anwendung der abgeleiteten Beziehungen.
Catalytic procedures are clearly the most economical means to effect selective processes in organic synthesis. For the preparation of enantiomerically pure compounds, the utilization of enzymes is particularly attractive because of high selectivities and mild, environmentally benign reaction conditions. Taking advantage of advances in molecular biology, unique new enzymes are now readily accessible in quantity with properties that are amenable to modification on demand. This volume brings together leading contributors from the forefront of this exciting technology. In their authoritative and timely reviews they cover the state-of-the-art of biocatalysis from the discovery of novel enzymes - by modern screening, evolutionary or immunological approaches - through immobilization techniques for technical processes, to their use in the asymmetric synthesis of important target compounds.
The purpose of this book is to explain the basic physical principles underlying the use of supercritical fluids. Excessive detail is avoided and experimental examples are used sparingly to illustrate the principles, so that the basic principles are clear. Some of the topics are not presently covered in other books or in the literature. The first half of the book covers the very basic topics and in the second half these are applied to separation methods and chemical reactions.
The demand for more durable fasteners to extend the life of equipment such as fishing vessels makes this illustrated introduction to hot-dip galvanizing an invaluable addition to the bookshelves of works managers, engineers, government officials and field project officers. Hot-dip galvanizing is a cost-effective method of protecting cast iron or steel components from corrosion by coating them in zinc, thereby increasing the life of nuts, bolts and other items normally exposed to the elements. The first section of this book describes wet, dry and 'old dry' processes of hot-dip galvanizing, including health and safety, principles and benefits, equipment, materials, power supply, maintenance and quality control. The processes are illustrated with flow diagrams and there are tables to compare the relative benefits of the different options. The second section covers the specification and costing for a galvanizing plant once the market requirements have been established and the best method has been selected.
This book provides a self-contained presentation of optical methods used to measure the structure and dynamics of complex fluids subject to the influence of external fields. Such fields--hydrodynamic, electric, and magnetic--are commonly encountered in both academic and industrial research, and can produce profound changes in the microscale properties of liquids comprised of polymers, colloids, liquid crystals, or surfactants. Starting with the basic Maxwell field equations, this book discusses the polarization properties of light, including Jones and Mueller calculus, and then covers the transmission, reflection, and scattering of light in anisotropic materials. Spectroscopic interactions with oriented systems such as absorptive dichroism, small wide angle light scattering, and Raman scattering are discussed. Applications of these methods to a wide range of problems in complex fluid dynamics and structure are presented, along with selected case studies chosen to elucidate the range of techniques and materials that can be studied. As the only book of its kind to present a self-contained description of optical methods used for the full range of complex fluids, this work will be special interest to a wide range of readers, including chemical engineers, physical chemists, physicists, polymer and colloid scientists, along with graduate and post-graduate researchers.
Bioengineering Approaches to Cancer Diagnosis and Treatment is written for an audience of senior undergraduate students and graduate students in mechanical, electrical and biomedical engineering fields and other professionals in medicine. It is ideally structured for teaching and for those who are working in cancer bioengineering or interdisciplinary projects. The book's authors bring a unique perspective from their expertise in immunology, nanobiomaterials and heat transfer. Topical coverage includes an introduction to the fundamentals of bioengineering and engineering approaches for cancer diagnosis, cancer treatment via case studies, and sections on imaging, immunotherapy, cell therapy, drug delivery, ultrasound and microfluidics in cancer treatment.
Scientists in many fields are now expressing considerable interest in non-linearity and the ideas of oscillations and chaos. Chemical reactions provide perfect examples of these phenomena, as oscillating reactions, explosions, ignition, travelling waves, patterns, quasiperiodicity, and chaos are all features of chemical kinetics. Now available in paperback, this book introduces non-linear phenomena in chemical kinetics using simple model schemes. These models involve chemical feedback, such as chain branching, autocatalysis, and self-heating. The emphasis is on physical and pictorial representation, and on identifying those gross features which are essential. The experimental conditions under which such behaviour will occur can be predicted using simple mathematical recipes, and these are also included. The first part of the book begins with a discussion of long-lived oscillations for autocatalytic or exothermic reactions in closed vessels. Stationary states, bistability, and oscillations in continuous flow reactors and diffusion cells are then considered. This is followed by chemical wave propagation and by pattern selection and oscillations. Complex oscillations, quasiperiodicity, and chemical chaos, either forced or spontaneous, are introduced. Part 2 deals with real experimental systems, describing observed experimental behaviour and its interpretation in terms of the underlying chemical mechanisms or simplified models. The Belousov-Zhabotinskii reactions is discussed in some detail as the most extensively studied system, and the behaviour of important gas phase reactions is presented.
Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design, Third Edition, is a systematic and comprehensive textbook on bioprocess kinetics, molecular transformation, bioprocess systems, sustainability and reaction engineering. The book reviews the relevant fundamentals of chemical kinetics, batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering and bioprocess systems engineering, introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, selection of cultivation methods, design and consistent control over molecular biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme in this text, however more advanced techniques and applications are also covered.
Describes the state-of-the-art techniques and methods involved in the design, operation, preparation and containment of bioreactor systems, taking into account the interrelated effects of variables associated with both upstream and downstream stages of the design process. The importance of the initial steps in the development of a bioprocess, such as strain and media selection, that have an overwhelming influence on all further operations, is emphasized.;This work is intended for biochemical, chemical and bioprocess engineers; biotechnologists; industrial biochemists; micro- and molecular biologists; food scientists; and upper-level undergraduate and graduate students in these disciplines.
Vorstande, Entscheider und Entwickler in der chemischen Industrie mussen sich in zunehmendem Masse mit Produktdesign beschaftigen. Produkte, die in Leistung, Handhabung und Gestaltung exakt Kundenvorstellungen entsprechen, bringen die notwendigen Wettbewerbsvorteile. Unternehmen mochten mit Innovationen neue Markte erobern und/oder die erreichte Marktposition starken. Dieses Buch zeigt Ihnen, wie Sie hierfur geeignete Produktideen entwickeln. " |
You may like...
New and Future Developments in Microbial…
Harikesh Bahadur Singh, Anukool Vaishnav
Paperback
R4,540
Discovery Miles 45 400
Current Developments in Biotechnology…
Giorgio Mannina, Ashok Pandey, …
Paperback
R4,543
Discovery Miles 45 430
Advanced Nanomaterials for Point of Care…
Sushma Dave, Jayashankar Das, …
Paperback
R4,540
Discovery Miles 45 400
Sustainable Technologies for Remediation…
Mohammad Hadi Dehghani, Rama Rao Karri, …
Paperback
R4,540
Discovery Miles 45 400
|