Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Biochemical engineering > General
Biomass, Biofuels and Biochemicals: Advances in Enzyme Technology provides state-of-the-art information on the fundamental aspects and current perspectives in enzyme technology to graduate students, postgraduates and researchers working in industry and academia. The book provides information about the use of enzyme technology as an important tool for biotechnological processes, including food, feed, fuels, textiles, paper, energy and environmental applications. The search for improvements in existing enzyme-catalyzed processes dictates the need to update information on various enzyme technologies. The book gives a snapshot of current practice and research in the area of enzyme technology.
The tumour microenvironment is increasingly recognized as an important contributor to cancer progression and treatment. However, most cancer studies continue to be performed in 2D tissue culture dishes that do not capture the characteristics of the tumour niche. This book provides an introduction to the rich chemical, topographical, and mechanical cues in the tumour microenvironment and then introduces readers to bioengineering strategies, including scaffold design and synthesis, chemical signalling and delivery, and co-culture, microfluidics, and organ-on-a-chip tools that can be used to mimic tumour microenvironment features. This book also includes discussion of emerging imaging methods compatible with tumour microenvironment mimicking biomaterials and discusses applications of such models in immuno-oncology, metastasis, and drug screening. Edited by two leaders in the field, this book will appeal to graduate students and researchers working in biomaterials science, chemical and biomedical engineering departments.
The purpose of this book is to explain the basic physical principles underlying the use of supercritical fluids. Excessive detail is avoided and experimental examples are used sparingly to illustrate the principles, so that the basic principles are clear. Some of the topics are not presently covered in other books or in the literature. The first half of the book covers the very basic topics and in the second half these are applied to separation methods and chemical reactions.
Generalized van der Waals Theory of Molecular Fluids in Bulk and at Surfaces presents successful research on the development of a new density theory of fluids that makes it possible to understand and predict a wide range of properties and phenomena. The book brings together recent advances relating to the Generalized van der Waals Theory and its use in fluid property calculations. The mathematics presentation is oriented to an audience of varying backgrounds, and readers will find exercises that can be used as a textbook for a course at the upper undergraduate or graduate level in physics or chemistry. In addition, it is ideal for scientists from other areas, such as geophysics, oceanography and molecular biology who are interested in learning about, and understanding, molecular fluids.
Current Trends and Future Developments on (Bio-) Membranes: Carbon Dioxide Separation/Capture by Using Membranes explores the unique property of membranes to separate gases with different physical and chemical properties. The book covers both polymeric and inorganic materials for CO2 separation and explains their mechanism of action, allowing for the development and most appropriate and efficient processes. It also lists the advantages of using membranes instead of other separation techniques, i.e., their low operating costs and low energy consumption. This book offers a unique opportunity for scientists working in the field of membrane technology for CO2 separation and capture.
Anisotropic Particle Assemblies: Synthesis, Assembly, Modeling, and Applications covers the synthesis, assembly, modeling, and applications of various types of anisotropic particles. Topics such as chemical synthesis and scalable fabrication of colloidal molecules, molecular mimetic self-assembly, directed assembly under external fields, theoretical and numerical multi-scale modeling, anisotropic materials with novel interfacial properties, and the applications of these topics in renewable energy, intelligent micro-machines, and biomedical fields are discussed in depth. Contributors to this book are internationally known experts who have been actively studying each of these subfields for many years. This book is an invaluable reference for researchers and chemical engineers who are working at the intersection of physics, chemistry, chemical engineering, and materials science and engineering. It educates students, trains the next generation of researchers, and stimulates continuous development in this rapidly emerging area for new materials and innovative technologies.
This volume explores the latest techniques and strategies used to study the field of peptide macrocycles. The chapters in this book ae organized into four parts: macrocycles synthesis, combinational library synthesis and screening, macrocycle characterization, and unique applications. Part One looks at a variety of peptide cyclization methodologies, and Part Two describes methods for the creation of peptide macrocycles libraries and their subsequent screening against biological targets of interest. Part Three discusses the study and characterization of peptide macrocycle-target interactions, and Part Four introduces unique applications for peptide macrocycles, from higher-order structure formation to post-synthetic functional modifications. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Peptide Macrocycles: Methods and Protocols is a valuable resource for both novice and expert researchers looking to learn more about this developing field.
Process synthesis and process intensification are becoming state-of-the-art scientific fields that provide the methods and tools to improve process technologies in terms of high energy efficiency, low capital investment, low emissions, improved safety, and less hazardous byproducts to achieve sustainable products and processes. The book covers manufacturing processes from both fossil- and biomass-based feedstocks for graduate students.
Die Kombination bereits verfugbarer Polymere zu Polymermischungen (Blends) erlaubt durch Nutzung ohnehin vorhandener Anlagentechnik wie Extrudern oder Knetern die ausserst schnelle und kostengunstige Anpassung der Werkstoffeigenschaften an das Anforderungsprofil einer geplanten Anwendung. Werden zusatzlich Nanopartikel zugesetzt, konnen Struktur-und Funktionswerkstoffe mit einzigartigen Eigenschaften hergestellt werden. Dies gilt insbesondere bei Verwendung von Carbon Nanotubes, die seit ihrer erstmaligen detaillierten Beschreibung im Jahr 1991 einen der grossten Forschungshypes der modernen Werkstoffentwicklungsgeschichte ausgelost haben. Nach der Verarbeitung bestimmt die raumliche Anordnung der Nanopartikel innerhalb der eingefrorenen Blendphasen die Werkstoffeigenschaften der Blendkomposite. Die Kenntnis der wahrend des Schmelzemischens massgeblichen Lokalisierungsmechanismen ist somit der Schlussel zum Verstandnis der Eigenschaften dieser Werkstoffe. Hauptgegenstand der vorliegenden Arbeit ist die Aufklarung des Lokalisierungsverhaltens von mehrwandigen Carbon-Nanotubes (MWCNTs) beim Schmelzemischen mit zweiphasigen Polymermischungen. Dies umfasst sowohl die Phanomenologie von Transfervorgangen zwischen den Blendphasen als auch die Ursachen des Grenzflachenubertritts. Es wird gezeigt, dass sich das Lokalisierungsverhalten von Carbon Nanotubes grundlegend von jenem anderer Nanopartikel wie z.B. Carbon Black unterscheidet. Dabei wird es von sehr starken thermodynamischen Kraften bestimmt, die in der Regel die hochselektive Anordnung der Nanotubes in einer der Blendphasen bewirken. Dieses Phanomen konnte auf die Geometrie der Nanopartikel zuruckgefuhrt werden. Es wird zudem nachgewiesen, dass CNTs trotz der starken, in die besser benetzende Phase gerichteten thermodynamischen Triebkrafte auch hochselektiv in einer schlechter benetzenden Phase angeordnet werden konnen, wenn es gelingt, die aussere Hulle der CNTs kovalent an diese anzubinden. Es wird gezeigt, dass d
The one-stop resource for rubber-clay nanocomposite information The first comprehensive, single-volume book to compile all the most important data on rubber-clay nanocomposites in one place, Rubber-Clay Nanocomposites: Science, Technology, and Applications reviews rubber-clay nanocomposites in an easy-to-reference format designed for R&D professionals. Including contributions from experts from North America, Europe, and Asia, the book explores the properties of compounds with rubber-clay nanocomposites, including their rheology, curing kinetics, mechanical properties, and many others. Rubber-clay nanocomposites are of growing interest to the scientific and technological community, and have been shown to improve rubber compound reinforcement and impermeability. These natural mineral fillers are of potential interest for large-scale applications and are already making an impact in several major fields. Packed with valuable information about the synthesis, processing, and mechanics of these reinforced rubbers, the book covers assorted rubber-clay nanocomposites applications, such as in automotive tires and as polymer fillers. Promoting common knowledge and interpretation of the most important aspects of rubber-clay nanocomposites, and clarifying the main results achieved in the field of rubbers and crosslinked rubbers something not covered in other books in the field Rubber-Clay Nanocomposites helps scientists understand morphology, vulcanization, permeability, processing methods, and characterization factors quickly and easily.
Stem Cell Manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product. The advent of stem cell research unveiled the therapeutic potential of stem cells and their derivatives and increased the awareness of the public and scientific community for the topic. The successful manufacturing of stem cells and their derivatives is expected to have a positive impact in the society since it will contribute to widen the offer of therapeutic solutions to the patients. Fully defined cellular products can be used to restore the structure and function of damaged tissues and organs and to develop stem cell-based cellular therapies for the treatment of cancer and hematological disorders, autoimmune and other inflammatory diseases and genetic disorders.
Biofuels for Aviation: Feedstocks, Technology and Implementation presents the issues surrounding the research and use of biofuels for aviation, such as policy, markets, certification and performance requirements, life cycle assessment, and the economic and technical barriers to their full implementation. Readers involved in bioenergy and aviation sectors-research, planning, or policy making activities-will benefit from this thorough overview. The aviation industry's commitment to reducing GHG emissions along with increasing oil prices have sparked the need for renewable and affordable energy sources tailored to this sector's very specific needs. As jet engines cannot be readily electrified, turning to biofuels is the most viable option. However, aviation is a type of transportation for which traditional biofuels, such as bioethanol and biodiesel, do not fulfill key fuel requirements. Therefore, different solutions to this situation are being researched and tested around the globe, which makes navigating this scenario particularly challenging. This book guides readers through this intricate subject, bringing them up to speed with its current status and future prospects both from the academic and the industry point of view. Science and technology chapters delve into the technical aspects of the currently tested and the most promising technology in development, as well as their respective feedstocks and the use of additives as a way of adapting them to meet certain specifications. Conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch are explored and their results are assessed for current and future viability.
Drawn from international sources, this book provides principles and strategies for the evaluation of chemical reactions, and for using this information in process design and management. A useful resource for engineers who design, start-up, operate, and manage chemical and petrochemical plants, the book places special emphasis on the use of state-of-the-art technology in theory, testing methods, and applications in design and operations.
Authoritative, comprehensive, and up-to-date—an indispensable resource for translators of Russian scientific and technical materials The spirit of cooperation that now exists between the Russian scientific community and its English-speaking colleagues has opened a floodgate of Russian language technical and scientific documents. To meet the demand for an authoritative and up-to-date reference, the classic Callaham's Russian-English Dictionary of Science and Technology has now been published in a new edition that encompasses the latest additions to the technical vocabulary. The product of decades of painstaking research by distinguished Russian language translators, this essential reference book upholds the high standard of thoroughness and accuracy that scientific and technical translators require. Technical specialists all over the English-speaking world—translators and interpreters, scientists, and engineers—will welcome the arrival of the Fourth Edition of Callaham's Russian-English Dictionary of Science and Technology.
Prevention, preparedness, response and recovery--the key components of emergency planning--form the major sections of this work. The book first describes PSM (Process Safety Management) as the key to prevention, then goes on to consider the main features of a preparedness program, including recognizing credible incidents, planning practical strategy to deal with these incidents, selecting necessary physical support systems and equipment, and developing a complete emergency response plan. The Response section presents the functions implemented during an actual emergency and concludes with a section on managing cleanup and restoration of operations. The many tables and figures include Sample Incident Command System Plans for both large and small organizations, OSHA and EPA regulations affecting planning, sample Fire Emergency Action Levels, HAZMAT Responder Levels, and OSHA Emergency Training Requirements.
Biochemical Engineering and Biotechnology, 2nd Edition, outlines the principles of biochemical processes and explains their use in the manufacturing of every day products. The author uses a diirect approach that should be very useful for students in following the concepts and practical applications. This book is unique in having many solved problems, case studies, examples and demonstrations of detailed experiments, with simple design equations and required calculations.
Practical Guides in Chemical Engineering are a cluster of short texts that each provides a focused introductory view on a single subject. The full library spans the main topics in the chemical process industries that engineering professionals require a basic understanding of. They are 'pocket publications' that the professional engineer can easily carry with them or access electronically while working. Each text is highly practical and applied, and presents first principles for engineers who need to get up to speed in a new area fast. The focused facts provided in each guide will help you converse with experts in the field, attempt your own initial troubleshooting, check calculations, and solve rudimentary problems. Solid-Liquid Filtration covers the basic principles and mechanisms of filtration, filtration testing including filter aids and filter media, types of filtration systems, selection of filtration systems and typical operating and troubleshooting approaches. This guide also discusses general applications and tips for process filtration and can be utilized by process engineers as a framework for "idea-generation" when analyzing filtration for an operating bottleneck issue or a new process development problem.
Enzymes in Oil Processing: Recent Developments and Applications provides solid, quantitative descriptions and reliable guidelines surrounding the development of enzyme technology for oil processing. This book provides comprehensive understanding of topics such as enzymatic degumming, enzymatic interesterification and enzymatic biodiesel production, focusing on the different enzyme assisted extraction methods used in oil in various sources such as soybean, canola, corn, olive, etc. The book also highlights the most exciting enzymatic transesterification of cooking oil and bioremediation of cooking oil waste by lipases. This book will be of interest to researchers working in the fields of enzymes, oil processing, applied science and bio-wastes. It will also be useful to scientists working on the processing of oil by enzymes and students in the development of green and sustainable methods for the processing of oil in chemistry, biotechnology and chemical engineering.
The analysis and modification of glycans of recombinant proteins continues to be active and challenging area of research and for the successful manufacture of these proteins. In Cell Engineering, volume 3: Glycosylation, Dr. Mohammed Al-Rubeai has compiled a group of articles that will provide research workers not only with reviews of the advances that have been made in all facets of the subject but with an in-depth assessment of the state of the art methodology and the various approaches for the improvement of glycoprotein production. Particularly important in this respect is the advances made in the development of genetically engineered host cell lines with novel glycosylation properties, as well as the integration of mass spectrophotometric analysis with separation techniques. This volume is intended not only for research students and senior scientists in cell culture and glycobiology, but also for industrial biotechnologists and biochemical engineers interested in the production of therapeutic glycoproteins, virus vector and ex vivo expansion of human cells for medical treatment.
Traditional and Novel Adsorbents for Antibiotics Removal from Wastewater describes, in detail, the importance of removing antibiotics from aqueous systems, along with new information on their variation, solubility, toxicology and allowable concentration in groundwater. The book covers adsorption as an applicable method, highlighting its advantages and disadvantages. It investigates various adsorbents ranging from traditional activated carbons, modified forms of clays, metal oxides, polymer resins, and more advanced materials such as graphene-based, MOF, nano-matrices, and composite materials as potential sorbents for the adsorption of antibiotics from aqueous solutions. In addition, the book covers biological microorganisms that have been used to remove antibiotics from wastewater and presents biopolymers, biowaste and living cells potentially and practically suitable for this purpose. For all adsorbents, the book explains preparation methods, main properties, modification techniques to increase antibiotic removal efficiency, mechanisms in antibiotic removal, advantages and limitations. It also presents adsorption-desorption in batch and continuous mode, optimized operating parameters, kinetic and equilibrium adsorption, and regeneration studies.
More then 20 years have passed now since the first recombinant protein producing microorganisms have been developed. In the meanwhile, numerous proteins have been produced in bacteria, yeasts and filamentous fungi, as weIl as higher eukaryotic cells, and even entire plants and animals. Many recombinant proteins are on the market today, and some of them reached substantial market volumes. On the first sight one would expect the technology - including the physiology of the host strains - to be optimised in detail after a 20 year's period of development. However, several constraints have limited the incentive for optimisation, especially in the pharmaceutical industry like the urge to proceed quickly or the requirement to define the production parameters for registration early in the development phase. The additional expenses for registration of a new production strain often prohibits a change to an optimised strain. A continuous optimisation of the entire production process is not feasible for the same reasons. |
You may like...
Register. A Copy of the Register of the…
Great Britain. Sheffield Assay Office, B W (Bernard William) Watson
Hardcover
R761
Discovery Miles 7 610
Experimental Glass Blowing for Boys
Carleton John B. 1872 Lynde, A C (Alfred Carlton) 1884 Gilbert, …
Hardcover
R753
Discovery Miles 7 530
A Practical Treatise on the Manufacture…
C (Carl) 1838-1921 Deite, William T. (William Theodore) Brannt
Hardcover
R956
Discovery Miles 9 560
Fermented Liquors - a Treatise on…
Lewis 1805-1876 Feuchtwanger
Hardcover
R826
Discovery Miles 8 260
|