![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > General
In the early 1980s capillary liquid chromatography was being established; it was a period in which only a few research groups published a relatively small number of papers on the subject. In terest has since taken off, and a period of intense development, to which no end is yet in sight, is now upon us. More investiga tors and instrument-making firms are now entering the field. This greater interest has resulted in the rapid appearance of two collec tions [1, 2] and a series of topical reviews [3-6]. However, it could hardly be said that all the problems in this area have been formulated, let alone solved. The preparation of very efficient - open tubular or packed - microbore columns, for example, remains more an art than a science, while the relation ship between radial and longitudinal mass transfer, and the effect of transcolumn velocity profiles on chromatographic efficiency, have been very poorly studied. Indeed, recent publications on these subjects have sometimes, far from clarifying matters, only muddied them further. Many instrument-making firms are trying to unify their equip ment so that it is suitable for microbore, conventional (analytical), and preparative liquid chromatography. This approach has not real ized the full potential of capillary chromatography, and there also remains room for improving the performance of capillary columns.
The basis for this volume is the 11th Symposium on Analytical
Ultracentrifugation held in March 25-26, 1999 at the University of
Potsdam, Germany. This book presents a comprehensive collection of
33 contributions from leading scientists in this field including:
This reference is designed for training, teaching, and continuing studies in the field of quality assurance in chemical measurement. The cross-platform CD-ROM accompanying the book contains materials from 15 experienced lecturers with more than 300 graphics and text overheads, included as ready-to-use Powerpoint documents. The material covered will be useful to students in analytical chemistry as well as professionals in industry and service labs.
This book is designed to give the reader up to date infonnation on some of the more exciting developments that have taken place at the leading edge of fragrance and flavour research. Chapter one gives the reader a rnpid excursion through the chronological landmarks of fragrance and flavour materials and sets the scene for the remaining nine chapters which cover topics that are at the forefront of modem research. Chapter two looks at the total synthesis of synthetically interesting perfumery naturnl materials. This chapter aims to highlight the creative and elegant chemistry that has been performed by some of the worlds greatest chemists in their quest to synthesise one of the five naturnl products reviewed in the chapter. The chapter fits in with the forward looking theme of the book as it will hopefully inspire other chemists that are interested in synthesising natural products to produce elegant new, or industrially applicable routes to these and other perfumery materials. Chapter three looks at the growing area of interest in asymmetric fragrance materials. The chapter focuses on the use of the metal-BINAP catalytic system for the preparation of fragrance and flavour ingredients. Environmental considerations are now an integrnl and vital part of planning any new industrial chemical process. Chapter four aims to give the reader an insight into the wide-ranging and often readily applicable chemistry that is currently available for the installation of environmentally friendly chemical processes.
This timely book opens up new avenues in the development of highly sensitive and specific fluorometric and sensor methods based on the NIR laser techniques, allowing detection down to the single molecule level. Most important are NIR laser diodes in combination with NIR dyes, which facilitates the automation and miniaturisation of reliable UV/vis and fluorescence spectroscopic and immunoassay in situ measurements. This permits, for example, analyses of pH values, metal ions, pollutants, membranes, proteins, living cells and the DNA genetic code. Furthermore, the book describes new applications of NIR dyes in high technology areas, such as photochemistry, molecular biology, clinical chemistry, tumour therapy, laser physics, nonlinear optics, laser sensitive optical recording techniques, optical disks, compact disks, laser printers, optical cards, photoengraving, transparent bar coding, forgery prevention, photoresists, spectrally sensitised photographic materials, thermal transfer printing, and heat shielding materials. A compilation of challenging information for scientists and engineers interested in high technology developments and applications.
The selected spectra presented in this volume are a testimony to the diversity of mineral carbonates. Their compositional variety embraces many of the chemical elements and is increased by the frequent presence of solid solution between members. They occur in all the broad categories of rock types: igneous, metamorphic, metasomatic and sedimentary; and they are often associated with important ores and rare element deposits. Carbonates are not only of significance in the geological domain, but also in industry and materials science. Accurate identification of the compounds is, therefore, vital for a proper understanding of any carbonate bearing system. The development of Fourier transform infrared spectrometry has been for some years at the stage where the acquisition of spectra is relatively simple, rapid and with good resolution. For identifi- tion, the method is inexpensive and can provide additional information on the nature of the chemical bonding. It is particularly suited to carbonates because of its ability to discriminate clearly between the different members. It is obvious that to be able to produce a large set of definitive spectra, a source of we- characterized minerals is required, but the location of such a source is not necessarily so obvious. Our two museums - The Natural History Museum in London and the National Museums of Scotland in Edinburgh - have joined forces to provide such a source, using their renowned mineral collections and authenticating each mineral by modern advanced methods of analysis and identifi- tion.
Nano-inspired Biosensors for Protein Assay with Clinical Applications introduces the latest developments in nano-inspired biosensing, helping readers understand both the fundamentals and frontiers in this rapidly advancing field. In recent decades, there has been increased interest in nano-inspired biosensors for clinical application. Proteins, e.g. antigen-antibody, tumor markers and enzymes are the most important target in disease diagnosis, and a variety of biosensing techniques and strategies have been developed for protein assay. This book brings together all the current literature on the most recent advances of protein analysis and new methodologies in designing new kinds of biosensors for clinical diagnostic use.
This volume contains the proceedings of the Ninth International Symposium on Cyclodextrins, held in Santiago de Compostela, Spain, May 31 - June 3, 1998. The papers collected represent a summary of the last two years' achievements in the application of cyclodextrins in such diverse fields as pharmaceuticals, biotechnology, textiles, chromatography and environmental sciences. Highlights: Chiral selection of chemicals, nuclear waste management, cyclodextrins in nasal drug delivery, cyclodextrins in pulmonary drug delivery, cyclodextrins as pharmaceutical excipients, pharmacokinetics, stabilization of drugs by cyclodextrins, structural characterization of cyclodextrin complexes by nuclear magnetic resonance and molecular modeling, artificial receptors, large cyclodextrins, cyclodextrins as enzyme models, new cyclodextrin derivatives and potentials. Audience: This book will be of interest to researchers whose work involves biotechnology, pharmaceuticals, food and chemicals and chromatographic methods, as well as fundamental cyclodextrin research.
In the rapidly developing information society there is an ever-growing demand for information-supplying elements or sensors. The technology to fabricate such sensors has grown in the past few decades from a skilful activity to a mature area of scientific research and technological development. In this process, the use of silicon-based techniques has appeared to be of crucial importance, as it introduced standardized (mass) fabrication techniques, created the possibility of integrated electronics, allowed for new transduction principles, and enabled the realization of micromechanical structures for sensing or actuation. Such micromechanical structures are particularly well-suited to realize complex microsystems that improve the performance of individual sensors. Currently, a variety of sensor areas ranging from optical to magnetic and from micromechanical to (bio)chemical sensors has reached a high level of sophistication. In this MESA Monograph the proceedings of the Dutch Sensor Conference, an initiative of the Technology Foundation (STW), held at the University of Twente on March 2-3, 1998, are compiled. It comprises all the oral and poster contributions of the conference, and gives an excellent overview of the state of the art of Dutch sensor research and development. Apart from Dutch work, the contributions of two external invited experts from Switzerland are included.
This handbook provides essential practical information for Industrial and State Control Laboratories and others concerned with ensuring compliance with European Community directive 90/128/EEC relating to plastic materials and articles intended to come into contact with foodstuffs. This new book on additives used in plastics for food contact can be seen as a companion to Spectra for the Identification of Monomers in Food Packaging (Kluwer Academic Publishers, 1993). The handbook begins with a chapter describing the legal framework and the implementation of the European legislation. There is a brief description of the Dutch fast method to test compliance with legislation using this handbook. Then, a collection of spectra is given for the identification of a hundred of the most important additives used in plastic packaging and coatings. These additives were selected from Synoptic Document N. 7 after extensive consultation with researchers in the field and with representatives from European industry. For every additive there is an entry in the handbook giving the structural formula, CAS and PM number and trivial name, together with information on physical characteristics, the food contact uses of the derived plastic materials. There is a brief description of the analytical approach for testing compliance with SML or QM limits and reference to the literature including European research projects. FT-IR, MS and 1H-NMR spectra are proved in standard format for each substance, and gas-chromatographic retention data are provided as a help in identification. Most of the additives listed in this volume will be made available on request as reference substances as either the pure substance or as a calibrant solution.
Conference Overview and the Role of Chemistry in High-Temperature Materials Science and Technology LEO BREWER Department of ChemistIy, University of California, and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 I don't want to compete with the fascinating historic account that John Drowart gave us, but I would like to go through the history of high don't get the reaction that I get from temperature symposia. I hope I some of my classes when I say, "Remember when such-and-such hap pened during the War?" And I get this blank look, and one of the students will say, "I wasn't born until after the Korean War. " Neverthe less, during World War II, many people in the high-temperature field had their first initiation. But there was one handicap. Owing to security measures, they were not able to interact with one another. Following the War, it was recognized that the high-temperature field was going to expand to meet the demands for materials with unique properties. To meet the demands for new fabrication techniques, it was important to establish better communications among various people. High-tempera ture symposia were established at that time and have continued very frequently, and I'd like to point out why they are especially important for this field. One problem is that it is not easy to work at high temperatures.
The MESA Research Institute of the University of Twente was created in 1990 through the joining of the research unit Sensors and Actuators with the department of Microelectronics. The multidisciplinary institute, with participation from the faculties of Electrical Engineering, Applied Physics and Chemical Technology, was recently recognized as a Centre of Excellence by the Dutch Science Foundation. It is fully 2 equipped with modem Clean Room facilities (1000 m ) and a number of research laboratories. The objective of MESA is to perform research and development of systems in modem information technology, and on the units on which they are based: the microstructures that process and transduce signals. The institute gradually expanded during the past few years till some 125 persons in 1994. Given the wide variety of research subjects within MESA, it has been decided to start a MESA Monographs series, appearing on a more or less regular, yearly basis. In this way, after some time a good overview of research topics under investigation at MESA will be obtained. The first volume of this series coincides with the Proceedings of pTAS '94, the first Workshop on Micro Total Analysis Systems, held on November 21-22 at the University of Twente in Enschede, The Netherlands. IlTAS has recently been defined as the first strategic research orientation of MESA, aiming at synergetic collaboration between the different disciplines present in MESA.
The use of electrochemical techniques by chemists, particularly those who regard themselves as "inorganic" coordination chemists, has undergone a very rapid growth in the last 15-20 years. The techniques, as dassically applied to inorganic species, had their origins in analytical chemistry, and the methodology had assumed, until the mid 60s, more importance than the chemiStry. However, the growth of interest in coordination compounds (including organometallic complexes) having unusually rich of electron-transfer in bio-inorganic redox properties, and in the understanding species, has propelfed electro-chemistry into the foreground of potentially readily available techniques for application to a very wide range of problems of interest to those chemists. This growth has been fuelled additionally by the availability of relatively cheap equipment of growing sophistication and by an increase in the "inorganic" chemists' general knowledge of physical electrochemistry. In particular, with increasing availability and sophistication of eqUipment, kinetic problems are now being addressed, and the range of electrode types and configuration and solvents has been greatly expanded. Furthermore, the rapid expansion of interest in biological problems has opened new avenues in functionalisation of electrodes, in the development of sensory devices and, in a sense, a return to the analytical base of the science, using novel and multi-disciplinary techniques drawing on synthesis chemistry of and electronic micro-engeneering. The drive towards increasing use microcomputer-controlled data analysis and the development of microeledrodes has opened exciting new avenues for the exploration of chemical reactions involving electron-transfer processes.
This volume contains the proceedings of the Eighth International Symposium on Cyclodextrins, held in Budapest, Hungary, March 31-April 2, 1996. The 147 papers collected here are milestones in the exponentially increasing cyclodextrin literature, and represent a summary of the last two years' achievement in this field, with applications in such diverse disciplines as pharmaceuticals, food, cosmetics, textiles, plastics, and chromatography. Some highlights: lipophilicity profiles of cyclodextrins by computer molecular graphics; recent toxicological studies on cyclodextrins; Buckminsterfullerene/cyclodextrin complexes; hydroxypropyl-beta-cyclodextrin; pharmacokinetics and toxicology; peracylated cyclodextrins as drug carriers; cyclodextrins in nasal drug delivery; textile fibre surface modification by a reactive cyclodextrin; cyclodextrin-containing fabric care products; drug targeting by cyclodextrin-dimers for photodynamic cancer therapy; cyclodextrins in ophthalmologic drugs; new cyclodextrin derivatives and their potentials. Audience: This book will be of interest to researchers whose work involves pharmaceuticals, food chemicals and flavours, food additives, chromatographic methods, and biotechnology, as well as fundamental cyclodextrin research.
The 1989 International Conference on Nuclear Analytical Methods in theUfe Scienceswas a continuationofa seriesofconfer- encesheldbytheInternationalAtomicEnergyAgency. Thefirsttook placeinAmsterdamin 1967,thesecondin Bledin 1972,andthethird inViennain 1978. Theaimoftheseconferenceshasbeentostimulate discussions between scientists who are working as biologists, envi- ronmentalists, and physicians, and those who are working on the advancementofnuclear analytical techniques. The 1989 Conference was held at the National Institute of Standards and Technology (NIST, formerly the National Bureau of Standards)inGaithersburg,Maryland. ThefocalpointoftheConfer- ence was the presentation of results from multidisciplinary research involvingnuclear analytical techniques and their applications to the life sciences. Wehave obtained contributions from life sciencefields thatrelatethenuclear analyticalmethods to abroad scopeofbiologi- cal, medical,and environmental applications. Deliberately,our defi- nition of nuclear analytical techniques was made flexible. Methods and applications were treated in a more comprehensive way than thoseatestablished meetings. Particularconsideration was given to contributions from developing countries. We are indebted to many people and organizations for their assistancein making this symposium possible. TheConference was organizedbytheUSDepartmentofCommerce'sNISTincooperation with the International Atomic Energy Agency, by supplying both financial support and scientific expertise. The meeting was cospon- soredbytheAmericanNuclearSociety,theUSDepartmentofEnergy, andtheFoodandDrugAdministration,whoprovidedbothorganiza- tional and financial support. We hope that the results of this Conference, presented here, will stimulatethe developmentofnew collaborativeresearch efforts betweenthe life sciencesand analytical fields. Acontinuationofthis series ofconferences willbe a measureofthe successofthis interdis- ciplinary collaboration.
The series of Conferences on the Spectroscopy of Biological Molecules aims to stimulate research and development in this area of Science. The relationship between the structure and the biological activity of such materials as proteins, lipids, and nucleic acids is fundamental. The 5th European Conference on the Spectroscopy of Biological Molecules (ECSBM) is held at the Hotel Poseidon Club, Loutraki, Greece, on 5-10 September 1993. The scientific contents are remained the same as in the past conferences. Emphasis is given to vibrational spectroscopy, mainly infrared and Raman applied to the study of structure and dynamics of proteins, nucleic acids, porphyrins, carbohydrates, membranes, etc. Most of the contributions describe molecular dynamics and excitation processes, in particular the electronic-vibrational excitations, which are studied by Fr-Raman, Fourier Transform Infrared (Fr-IR) coupled often with microscopy and chromatography. Contributions also include Fr-Raman and FT-IR instrumentation and new developments in this area, and applications in Biology and Medicine. Furthermore, there is a plenary lecture in Mass Spectrometry and its applications in biomedical analysis, and a session devoted to Nuclear Magnetic Resonance (NMR) and its application in the study of biological molecules. Several contributions are devoted to other methods, such as CD, optical absorption, fluorescence and molecular graphics simulations. This volume of ECSBM contains shon articles by the invited and contributed lectures as well as from the Poster presentations from many European and non-European countries.
Lasers are relatively recent additions to the analytical scientist's arsenal. Because of this, many analysts-whether their concern is research or some range of applications-are in need of a tutorial introduction not only to the principles of lasers, their optics, and radiation, but also to their already diverse and burgeoning applications. The artic1es presented in this volume, carefully enhanced and edited from lectures prepared for the ACS Division of Analytical Chemistry 1979 Summer Symposium, are designed to provide just such a broad introduction to the subject. Thus, in addition to several excellent chapters on laser fundamentals, there are many practically oriented artic1es dealing with laser analytical methodology, inc1uding techniques based on the absorption oflaser radiation, on laser-induced fluorescence, and on some of the uses of lasers in chemical instru mentation. The first of these sections is pivotal and reflects in part our philosophy in organizing this collection. The authors of the initial chapters were invited not only because of their expertise in the field of lasers and analytical chemistry, but also because their didactic approach to writing and their c1arity of presentation were well known to us. It is our hope that individual readers with little knowledge of lasers will gain from these introductory chapters sufficient information to render the later, more detailed artic1es both useful and meaningful."
During the past fifty years, thousands of natural products have been isolated from plants, fungi, and bacteria. Apart from intense searches by pharmaceutical companies for medicinals and the concentrated effort mounted by the National Cancer Institute, many of these have not been tested in biological systems. The major reasons for this appear to be, at least, twofold. First, individual researchers looking for biologically active natural products will often isolate only small amounts of material sufficient to determine a structure and calculate the specific activity for their particular bioassay systems: insufficient funds preclude re-isolating the compound unless industrial potential is foreseen. Second, the difficulty with which original structures were proved prior to 1972. This required the isolation of relatively large quantities of a natural product and there followed extensive degradation, elemental analyses of the parent and its fragments, then synthesis, piece by piece, of the molecule. All this took time and energy. No wonder that when the structure was proved the chemist was enervated. And coupled to this was the fact that many chemists were not trained to test their materials in biological systems. In contrast, today a natural product can be isolated, its mass and molecular formula determined and, if there is some serendipity, crystals may be obtained for single crystal x-ray analysis. If conditions are near perfect, it is possible to isolate and identify a novel compound in a month.
The analysis of materials containing several elements used to be a difficult problem for analytical chemists, so a well established sequence of wet chemical qualitative tests were performed to ensure each element was detected. Quantitative tests could then be carried out on the sample, according to the range of elements present. Most analytical chemists were very familiar with these techniques, having been taugth them from a very early stage in their education and careers. The analytical chemist can now call on a range of specialist instrumental techniques which can detect the presence of many elements, often simultaneously, and often quantitatively, providing rapid results on samples which, in the past, could take days. The drawback is that the instruments tend to be expensive, suited to particular sample types or matrices and complex in both setting up and in the interpretation of results. Furthermore the general analytical chemist may have access and familiarity with only one or two methods. Written by an international team of contributors, each experts in their particular fields, this book familiarizes analytical chemists with the range of elemental analysis techniquers, to enable them to specify the most appropriate test for any given sample. In addition, it contains important chapters on sample preparation and quality control, essential elements in obtaining accurate and reliable analytical results. As such, this book will be essential reading for all analytical chemists. The techniques of elemental analysis are important in many other disciplines, so the book will be of particular interest to those commissioning a wide range of analytical measurements, such as chemists, geologists, environmental scientists and biologists. The breadth and depth of coverage will also make the book very useful for advanced students.
While advances in modem medicine largely parallel our understanding of morphology, discoveries in morphology are propelled by developments of new tools and means to visualize and measure tissue elements. The invention of dissecting, light, fluorescence and electron microscopes together with advances in labeling and staining techniques are among the stepping stones of morphological progress. Today, we are in an exciting new era when classical morphology is being combined with developments from other disciplines. The combination of morphology and immunology resulted in immunocytochemistry; morphology and molecular biology led to in situ hybridization and in situ PCR. Adding computer science to morphology gave birth to image analysis. Combining laser technology and the microsope evolved into confocal microscope. For more than a decade, modem morphology has continued to develop by merging with other disciplines at a rate that is still gathering momentum, providing exciting and dynamic new frontiers for other biological fields. "Modem Methods in Analytical Morphology," based largely on the "First International Workshop on Modem Methods in Analytical Histochemistry, "is an updated review of the current trends in the field. It covers an extensive array of new technical developments in major disciplines of modem morphology. The authors are not only leaders in their fields but also have extensive "hands on" experience with "bench work. " Their chapters are written in a comprehensive manner including discussion of both theoretical considerations and practical applications to give the readers a broad view of the topics covered.
From the beginnings of modern chemistry, molecular structure has been a lively area of research and speculation. For more than half a century spectroscopy and other methods have been available to characterize the structures and shapes of molecules, particularly those that are rigid. However, most molecules are at least to some degree non-rigid and this non-rigidity plays an important role in such diverse areas as biological activity, energy transfer, and chemical reactivity. In addition, the large-amplitude vibrations present in non-rigid molecules give rise to unusual low-energy vibrational level patterns which have a dramatic effect on the thermodynamic properties of these systems. Only in recent years has a coherent picture of the energetics and dynamics of the conformational changes inherent in non-rigid (and semi-rigid) molecules begun to emerge. Advances have been made in a number of different experimental areas: vibrational (infrared and Raman) spectroscopy, rotational (microwave) spectroscopy, electron diffraction, and, most recently, laser techniques probing both the ground and excited electronic states. Theoretically, the proliferation of powerful computers coupled with scientific insight has allowed both empirical and ab initio methods to increase our understanding of the forces responsible for the structures and energies of non-rigid systems. The development of theory (group theoretical methods and potential energy surfaces) to understand the unique characteristics of the spectra of these floppy molecules has also been necessary to reach our present level of understanding. The thirty chapters in this volume contributed by the key speakers at the Workshop are divided over the various areas. Both vibrational and rotational spectroscopy have been effective at determining the potential energy surfaces for non-rigid molecules, often in a complementary manner. Recent laser fluorescence work has extended these types of studies to electronic excited states. Electronic diffraction methods provide radial distribution functions from which both molecular structures and compositions of conformational mixtures can be found. Ab initio calculations have progressed substantially over the past few years, and, when carried out at a sufficiently high level, can accurately reproduce (or predict ahead of time) experimental findings. Much of the controversy of the ARW related to the question of when an ab initio is reliable. Since the computer programs are readily available, many poor calculations have been carried out. However, excellent results can be obtained from computations when properly done. A similar situation exists for experimental analyses. The complexities of non-rigid molecules are many, but major strides have been taken to understand their structures and conformational processes.
''A grand compilation...Well-bound, well-printed....It is sure that this pioneering book will help growing interest of the separation scientists in aqueous biphasic systems and broaden the scope of the field.'' --- Indian Chemical Society, 1998 |
You may like...
Analysis of Marine Samples in Search of…
Teresa Rocha-Santos, Armando C. Duarte
Hardcover
Handbook of Thermal Analysis and…
Sergey Vyazovkin, Nobuyoshi Koga, …
Paperback
Cocoa Butter and Related Compounds
Nissim Garti, Neil R. Widlak
Hardcover
R4,705
Discovery Miles 47 050
Data Analysis for Omic Sciences: Methods…
Joaquim Jaumot, Carmen Bedia, …
Hardcover
R6,386
Discovery Miles 63 860
Photoelectrochemical Bioanalysis…
Muhammad Altaf, Raja Shahid Ashraf, …
Paperback
R4,171
Discovery Miles 41 710
Assessing Exposures and Reducing Risks…
James N. Seiber, Robert I. Krieger, …
Hardcover
R2,043
Discovery Miles 20 430
Alteration of Ovoproducts - From…
Olivier Goncalves, Jack Legrand
Hardcover
R3,937
Discovery Miles 39 370
|