![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > General
Handbook of Radioactivity Analysis: Radiation Physics and Detectors, Volume One, and Radioanalytical Applications, Volume Two, Fourth Edition, is an authoritative reference on the principles, practical techniques and procedures for the accurate measurement of radioactivity - everything from the very low levels encountered in the environment, to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, and fuel cycle facilities, and in the implementation of nuclear forensic analysis and nuclear safeguards. It includes sample preparation techniques for all types of matrices found in the environment, including soil, water, air, plant matter and animal tissue, and surface swipes. Users will find a detailed discussion of our current understanding of the atomic nucleus, nuclear stability and decay, nuclear radiation, and the interaction of radiation with matter relating to the best methods for radionuclide detection and measurement.
The use of conventional nuclear magnetic resonance is limited by the fact that the object needs to be carried to the NMR equipment and needs to fit inside large superconducting magnets. Both limitations are removed by single-sided NMR probes based on open magnets specially adapted to the object under study. These can be inexpensive and portable sensors that give access to a large number of applications inaccessible with using conventional magnet geometries. Substantial improvements in the magnet design, detection electronics, and the implementation of suitable techniques to work in the inhomogeneous magnetic fields of open magnets have allowed scientists and engineers to measure relaxation-time distributions, diffusion coefficients, 3D images, velocity distributions, and even highly resolved NMR spectra in the stray field of the magnet. This book is the first comprehensive account describing the key issues to be considered at the time of designing and building open magnets, and summarizing the arsenal of pulse sequences available today for material analysis.
The project CLEAN (CO2 Large-Scale Enhanced Gas Recovery in the Altmark Natural Gas Field) provides site specific knowledge for a potential future pilot project. This contributed volume gives an overview and final results of the entire project which is finalized to the end of 2012.
EPR of Free Radicals in Solids: Trends in Methods and Applications, 2nd ed. presents a critical two volume review of the methods and applications of EPR (ESR) for the study of free radical processes in solids. Emphasis is on the progress made in the developments in EPR technology, in the application of sophisticated matrix isolation techniques and in the advancement in quantitative EPR that have occurred since the 1st edition was published. Improvements have been made also at theoretical level, with the development of methods based on first principles and their application to the calculation of magnetic properties as well as in spectral simulations. EPR of Free Radicals in Solids II focuses on the trends in applications of experimental and theoretical methods to extract structural and dynamical properties of radicals and spin probes in solid matrices by continuous wave (CW) and pulsed techniques in nine chapters written by experts in the field. It examines the studies involving radiation- and photo-induced inorganic and organic radicals in inert matrices, the high-spin molecules and metal-based molecular clusters as well as the radical pro-cesses in photosynthesis. Recent advancements in environmental applications in-cluding measurements by myon resonance of radicals on surfaces and by quantitative EPR in dosimetry are outlined and the applications of optical detection in material research with much increased sensitivity reviewed. The potential use of EPR in quantum computing is considered in a newly written chapter. This new edition is aimed to experimentalists and theoreticians in research involving free radicals, as well as for students of advanced courses in physical chemis-try, chemical physics, materials science, biophysics, biochemistry and related fields.
knowledge. This material provided has been collected from different sources. One important source is the material available from EURACHEM. Eurachem is a network of organisations in Europe having the objective of establishing a system for the international tra- ability of chemical measurements and the promotion of good quality practices. It provides a forum for the discussion of common problems and for developing an informed and considered approach to both technical and policy issues. It provides a focus for analytical chemistry and quality related issues in Europe. You can find more information about EURACHEM on the internet via "Eurachem -A Focus for Analytical Chemistry in Europe" (http://www.eurachem.org). In particular the site Guides and Documents contains a number of different guides, which might help you to set up a quality system in your laboratory. The importance of quality assurance in analytical chemistry can best be described by the triangles depicted in Figs. 1 and 2. Quality is checked by testing and testing guaranties good quality. Both contribute to progress in QA (product control and quality) and thus to establishing a market share. Market success depends on quality, price, and flexibility. All three of them are interconnected. Before you can analyse anything the sample must be taken by someone. This must be of major concern to any analytical chemist. There is no accurate analysis wi- out proper sampling. For correct sampling you need a clear problem definition. There is no correct sampling without a clear problem definition
This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of reaction mechanisms, and (v) technical development and integration challenges in the fabrication of sensing arrays and devices.
Pharmaceutical manufacture is very exacting - for example, drugs must be uniform in size, shape, efficacy, bioavailability, and safety. The presence of different polymorphs in drug production is a serious problem, since different polymorphs differ in bioavailability, solubility, dissolution rate, chemical and physical stability, melting point, color, filterability, density, and flow properties. Fine Particles in Medicine and Pharmacy discusses particle size, shape, and composition and how they determine the choice of polymorph of a drug.
The present edited book is the presentation of 18 in-depth national and international contributions from eminent professors, scientists and instrumental chemists from educational institutes, research organizations and industries providing their views on their experience, handling, observation and research outputs on HPTLC, a multi-dimensional instrumentation. The book describes the recent advancements made on TLC which have revolutionized and transformed it into a modern instrumental technique HPTLC. The book addresses different chapters on HPTLC fundamentals: principle, theory, understanding; instrumentation: implementation, optimization, validation, automation and qualitative and quantitative analysis; applications: phytochemical analysis, biomedical analysis, herbal drug quantification, analytical analysis, finger print analysis and potential for hyphenation: HPTLC future to combinatorial approach, HPTLC-MS, HPTLC-FTIR and HPTLC-Scanning Diode Laser. The chapters in the book have been designed in such away that the reader follows each step of the HPTLC in logical order.
Metrology and its applications e.g. in chemical or food analysis or in environmental monitoring are entering our daily life. This book provides a basic overview over the relevant metrological concepts like traceability, ISO uncertainties or cause-and-effect diagrams. The applications described in great detail range from progression-of-error type evaluation of the measurement uncertainty budget to complex applications like pH measurement or speciation calculations for aqueous solutions. The consequences of a measurement uncertainty concept for chemical data are outlined for geochemical modeling applied to transport in the subsurface and to nuclear waste disposal. Special sections deal with the deficits of existing thermodynamic data for these applications and with the current position of chemical metrology in respect to other quality assurance measures, e.g. ISO 900x, GLP, European and U.S.-American standards.
Chemical vapor sensing arrays have grown in popularity over the past two decades, finding applications for tasks such as process control, environmental monitoring, and medical diagnosis. This is the first in-depth analysis of the process of choosing materials and components for these "electronic noses", with special emphasis on computational methods. For a view of component selection with an experimental perspective, readers may refer to the complementary volume of Integrated Microanalytical Systems entitled "Combinatorial Methodologies for Sensor Materials."
Channels of nanotubular dimensions exist in a variety of materials (examples are carbon nanotubes and the nanotubular channels of zeolites and zeotypes) and show promise for numerous applications due to their unique properties. One of their most important properties is their capacity to adsorb molecules and these may exist in a variety of phases. "Adsorption and Phase Behaviour in Nanochannels and Nanotubes" provides an excellent review of recent and current work on adsorption on nanometerials. It is an impressive collection of papers dealing with the adsorption and phase behaviour in nanoporous materials from both experimental and theoretical perspectives. "Adsorption and Phase Behaviour in Nanochannels and Nanotubes" focuses on carbon nanotubes as well as zeolites and related materials.
For the first time, distinguished scientists from key institutions worldwide provide a comprehensive approach to optical sensing techniques employing the phenomenon of guided wave propagation for chemical and biosensors. This includes both state-of the-art fundamentals and innovative applications of these techniques. The authors present a deep analysis of their particular subjects in a way to address the needs of novice researchers such as graduate students and post-doctoral scholars as well as of established researchers seeking new avenues. Researchers and practitioners who need a solid foundation or reference will find this work invaluable. This second of two volumes covers the incorporation of periodic structures in waveguides to exploit the Bragg phenomenon, optical fiber sensors, hollow waveguides and micro-resonators as well as a review of the tremendous expansion of terahertz technology for sensing applications.
Thermal Analysis of Micro-, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics, and Thermodynamics complements and adds to volume 8 Glassy, Amorphous and Nano-Crystalline Materials by providing a coherent and authoritative overview of cutting-edge themes in this field. In particular, the book focuses on reaction thermodynamics and kinetics applied to solid-state chemistry and thermal physics of various states of materials. Written by an international array of distinguished academics, the book deals with fundamental and historical aspects of phenomenological kinetics, equilibrium background of processes, crystal defects, non-stoichiometry and nano-crystallinity, reduced glass-transition temperatures and glass-forming coefficients, determination of the glass transition by DSC, the role of heat transfer and phase transition in DTA experiments, explanation of DTA/DSC methods used for the estimation of crystal nucleation, structural relaxation and viscosity behaviour in glass and associated relaxation kinetics, influence of preliminary nucleation and coupled phenomenological kinetics, nucleation on both the strongly curved surfaces and nano-particles, crystallization of glassy and amorphous materials including oxides, chalcogenides and metals, non-parametric and fractal description of kinetics, disorder and dimensionality in nano-crystalline diamond, thermal analysis of waste glass batches, amorphous inorganic polysialates and bioactivity of hydroxyl groups as well as reaction kinetics and unconventional glass formability of oxide superconductors. Thermal Analysis of Micro-, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics, and Thermodynamics is a valuable resource to advanced undergraduates, postgraduates, and researches working in the application fields of material thermodynamics, thermal analysis, thermophysical measurements, and calorimetry.
With diet, health, and food safety news making headlines on a regular basis, the ability to separate, identify, and analyze the nutrients, additives, and toxicological compounds found in food and food components is more important than ever. This requires proper training in the application of best methods, as well as efforts to improve existing methods to meet analytical needs. Advances in instrumentation and applied instrumental analysis methods have allowed scientists concerned with food and beverage quality, labeling, compliance, and safety to meet these ever-increasing analytical demands. This updated edition of Methods of Analysis of Food Components and Additives covers recent advances as well as established methods in a concise guide, presenting detailed explanations of techniques for analysis of food components and additives. Written by leading scientists, many of whom personally developed or refined the techniques, this reference focuses primarily on methods of food analysis and novel analysis instruments. It provides readers with a survey of modern analytical instruments and methods for the analysis of food components, additives, and contaminants. Each chapter summarizes key findings on novel analysis methods, including the identification, speciation, and determination of components in raw materials and food products. The text describes the component or additive that can be analyzed, explains how it works, and then offers examples of applications. This reference covers selection of techniques, statistical assessments, analysis of drinking water, and rapid microbiological techniques. It also describes the application of chemical, physical, microbiological, sensorial, and instrumental novel analysis to food components and additives, including proteins, peptides, lipids, vitamins, carotenoids, chlorophylls, and food allergens, as well as genetically modified components, pesticide residues, pollutants, chemical preservatives, and radioactive components in foods. The Second Edition contains three valuable new chapters on analytical quality assurance, the analysis of carbohydrates, and natural toxins in foods, along with updates in the remaining chapters, numerous examples, and many new figures.
Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future.
This book is divided into chapters covering instrumentation, sedimentation velocity runs, density gradient runs, application examples and future developments. In particular, the detailed application chapter demonstrates the versatility and power of AUC by means of many interesting and important industrial examples. Thus the book concentrates on practical aspects rather than details of centrifugation theory.
Working in the lab, but unsure what your results actually mean? Would you like to know how to apply trueness tests, calculate standard deviations, estimate measurement uncertainties or test for linearity? This book offers you a problem-based approach to analytical quality assurance (AQA). After a short introduction into required fundamentals, various topics such as statistical tests, linear regression and calibration, tool qualification or method validation are presented in the form of exercises for self-study. Solutions are provided in a clear step-by-step manner. Interactive Excel-sheets are available as Extra Materials for trying out the various concepts. For professionals as well as graduate students confronted with analytical quality assurance for the first time, this book will be the clue to meeting such challenges.
Despite achievements in the application of enzymes, antibodies and biological receptors to diagnostics and sensing, the last two decades have also witnessed the emergence of a number of alternative technologies based on synthetic chemistry. This volume shows how synthetic receptors can be designed with characteristics that make them attractive alternatives to biological molecules in the sensory and diagnostics fields, with contributions from leading experts in the area. Subjects covered include synthetic receptors for a range of biomolecules, the use of antimicrobial peptides for the detection of pathogenic microorganisms, the development of molecularly imprinted polymer (MIP) nanoparticles, the in silico design of MIPs and MIP-based sensors, and two chapters examining the development of sensors from an industrial point of view. The particular focus of all chapters is on practical aspects, either in the development process or the applications of the synthesized materials. This book will serve as an important reference work for business leaders and technology experts in the sensors and diagnostics sector.
This book describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications in medicine, materials science, and chemical engineering. It will be the first comprehensive account of this new device and its applications. Among the key advances of this method is that images can be obtained in much shorter times than originally anticipated, and that even vector maps of flow fields can be measured although the magnetic fields are highly inhomogeneous. Furthermore, the equipment is small, mobile and affordable to small and medium enterprises and can be located in doctors' offices.
Numerous works on non-destructive testing of food quality have been reported in the literature. Techniques such as Near InfraRed (NIR) spectroscopy, color and visual spectroscopy, electronic nose and tongue, computer vision (image analysis), ultrasound, x-ray, CT and magnetic resonance imaging are some of the most applied for that purpose and are described in this book. Aspects such as theory/basics of the techniques, practical applications (sampling, experimentation, data analysis) for evaluation of quality attributes of food and some recent works reported in literature are presented and discussed. This book is particularly interesting for new researchers in food quality and serves as an updated state-of-the-art report for those already familiar with the field.
Biological membranes play a central role in cell structure, shape and functions. However, investigating the membrane bilayer has proved to be difficult due to its highly dynamic and anisotropic structure, which generates steep gradients at the nanometer scale. Due to the decisive impact of recently developed fluorescence-based techniques, tremendous advances have been made in the last few years in our understanding of membrane characteristics and functions. In this context, the present book illustrates some of these major advances by collecting review articles written by highly respected experts. The book is organized in three parts, the first of which deals with membrane probes and model membranes. The second part describes the use of advanced quantitative and high-resolution techniques to explore the properties of biological membranes, illustrating the key progress made regarding membrane organization, dynamics and interactions. The third part is focused on the investigation of membrane proteins using the same techniques, and notably on the membrane receptors that play a central role in signaling pathways and therapeutic strategies. All chapters provide comprehensive information on membranes and their exploration for beginners in the field and advanced researchers alike.
Chemical sensors are in high demand for applications as varied as water pollution detection, medical diagnostics, and battlefield air analysis. Designing the next generation of sensors requires an interdisciplinary approach. The book provides a critical analysis of new opportunities in sensor materials research that have been opened up with the use of combinatorial and high-throughput technologies, with emphasis on experimental techniques. For a view of component selection with a more computational perspective, readers may refer to the complementary volume of Integrated Analytical Systems edited by M. Ryan et al., entitled "Computational Methods for Sensor Material Selection".
This thesis presents new methods for the characterization of vegetable oils, with focus in olive oil, according to geographical and botanical origin, genetic variety and other issues influencing product quality. A wide variety of analytical techniques have been employed, such as various chromatographic techniques (different gas and liquid chromatography methods), an electronic nose, infrared spectroscopy and expert-panel evaluation. Several families of minor compounds, with interest as adulteration markers, have been used for method development, including tocopherols, sterols, phenolics, alcohols, proteins and others. Most methods have been enhanced by the application of multivariate chemometrics. The proposed analytical techniques are of interest to investigate fraudulent actions and practices which are detrimental to product quality.
The key element of any fluorescence sensing or imaging technology is the fluorescence reporter, which transforms the information on molecular interactions and dynamics into measurable signals of fluorescence emission. This book, written by a team of frontline researchers, demonstrates the broad field of applications of fluorescence reporters, starting from nanoscopic properties of materials, such as self-assembled thin films, polymers and ionic liquids, through biological macromolecules and further to living cell, tissue and body imaging. Basic information on obtaining and interpreting experimental data is presented and recent progress in these practically important areas is highlighted. The book is addressed to a broad interdisciplinary audience.
Principles of Analytical Chemistry gives readers a taste of what the field is all about. Using keywords of modern analytical chemistry, it constructs an overview of the discipline, accessible to readers pursuing different scientific and technical studies. In addition to the extremely easy-to-understand presentation, practical exercises, questions, and lessons expound a large number of examples. |
You may like...
The Future of the History of Chemical…
Leah Rae Mcewen, Robert E. Buntrock
Hardcover
R5,477
Discovery Miles 54 770
Handbook of Thermal Analysis and…
Sergey Vyazovkin, Nobuyoshi Koga, …
Paperback
Alteration of Ovoproducts - From…
Olivier Goncalves, Jack Legrand
Hardcover
R3,937
Discovery Miles 39 370
Analysis of Marine Samples in Search of…
Teresa Rocha-Santos, Armando C. Duarte
Hardcover
Assessing Exposures and Reducing Risks…
James N. Seiber, Robert I. Krieger, …
Hardcover
R2,043
Discovery Miles 20 430
Cocoa Butter and Related Compounds
Nissim Garti, Neil R. Widlak
Hardcover
R4,705
Discovery Miles 47 050
Prof. of Drug Substances, Excipients and…
Abdulrahman Al-Majed
Hardcover
R5,239
Discovery Miles 52 390
Smartphones for Chemical Analysis: From…
Joost Laurus Dinant Nelis, Aristeidis Tsagkaris
Hardcover
R6,314
Discovery Miles 63 140
|