![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology > General
This book presents contributions to the 19th biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. Though the book's primary emphasis is on the aerospace context, it also addresses further important applications, e.g. in ground transportation and energy.
Race to the Moon is a suspenseful thriller about the 30-year clash between the United States and the Soviet Union to be the first to put a man on the moon. This true account is heavy with intrigue, espionage, and controversy. Beginning with a 1961 pledge by President John F. Kennedy to plant the Stars and Stripes on the lunar surface by the end of the decade, the story flashes back to the first days of World War II. At that time, England was tipped off by a high Nazi official that the Third Reich was developing revolutionary long-range rockets. This same source clandestinely provided documents that shocked British scientists: The Germans were 25 years ahead of England and the United States in rocket development! And then, in September 1944, 60-foot-long V-2 rockets, for which there was no defense, began raining down on London, causing enormous destruction and loss of life. Even while the fighting was still raging in Germany in the spring of 1945, a handful of young U.S. Army officers scored a colossal coup: They connived to steal 100 of the huge V-2s that had been found in an underground factory. They were dismantled and slipped by train out of Germany, destination White Sands, New Mexico. Then began a no-holds-barred search for German rocket scientists in the chaos of a defeated Third Reich, with the Americans and British on one side and the Russians on the other. Within weeks of the close of the war, Wernher von Braun and 126 of his rocket team members were corraled, shipped to the United States, and began working secretly on missile development. At the same time, the Soviets literally kidnapped other German rocket scientists and sent them to Russia to continue their space work. In the years ahead, Wernher von Braun and his German rocket team, nearly all of whom became naturalized citizens of the United States, collaborated with American scientists to overcome enormous space achievements by the Soviets--and bungling by Washington politicians--to send Neil Armstrong scampering about on the moon in 1969.
At the intersection of astronautics, computer science, and social science, this book introduces the challenges and insights associated with computer simulation of human society in outer space, and of the dynamics of terrestrial enthusiasm for space exploration. Never before have so many dynamic representations of space-related social systems existed, some deeply analyzing the logical implications of social-scientific theories, and others open for experience by the general public as computer-generated virtual worlds. Fascinating software ranges from multi-agent artificial intelligence models of civilization, to space-oriented massively multiplayer online games, to educational programs suitable for schools or even for the world's space exploration agencies. At the present time, when actual forays by humans into space are scarce, computer simulations of space societies are an excellent way to prepare for a renaissance of exploration beyond the bounds of Earth.
This book focuses on systems engineering, systems thinking, and how that thinking can be learned in practice. It describes a novel analytical framework based on activity theory for understanding how systems thinking evolves and how it can be improved to support multidisciplinary teamwork in the context of system development and systems engineering. This method, developed using data collected over four years from three different small space systems engineering organizations, can be applied in a wide variety of work activities in the context of engineering design and beyond in order to monitor and analyze multidisciplinary interactions in working teams over time. In addition, the book presents a practical strategy called WAVES (Work Activity for a Evolution of Systems engineering and thinking), which fosters the practical learning of systems thinking with the aim of improving process development in different industries. The book offers an excellent resource for researchers and practitioners interested in systems thinking and in solutions to support its evolution. Beyond its contribution to a better understanding of systems engineering, systems thinking and how it can be learned in real-world contexts, it also introduce a suitable analysis framework that helps to bridge the gap between the latest social science research and engineering research.
China Satellite Navigation Conference (CSNC) 2013 Proceedings presents selected research papers from CSNC2013, held on 15-17 May in Wuhan, China. The theme of CSNC2013 is: BeiDou Application: Opportunities and Challenges. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou system especially. They are divided into 9 topics to match the corresponding sessions in CSNC2013, which broadly covered key topics in GNSS. Readers can learn about the BeiDou system and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/BeiDou system, and the Academician of Chinese Academy of Sciences (CAS); JIAO Wenhai is a researcher at China Satellite Navigation Office; WU Haitao is a professor at Navigation Headquarters, CAS; SHI Chuang is a professor at Wuhan University.
This book explains theoretical derivations and presents expressions for fluid and convective turbulent flow of mildly elastic fluids in various internal and external flow situations involving different types of geometries, such as the smooth/rough circular pipes, annular ducts, curved tubes, vertical flat plates, and channels. Understanding the methodology of the analyses facilitates appreciation for the rationale used for deriving expressions of parameters relevant to the turbulent flow of mildly elastic fluids. This knowledge serves as a driving force for developing new ideas, investigating new situations, and extending theoretical analyses to other unexplored areas of the rheology of mildly elastic drag reducing fluids.The book suits a range of functions--it can be used to teach elective upper-level undergraduate or graduate courses for chemical engineers, material scientists, mechanical engineers, and polymer scientists; guide researchers unexposed to this alluring and interesting area of drag reduction; and serve as a reference to all who want to explore and expand the areas dealt with in this book.
The book describes the main findings of the EU-funded project IDIHOM (Industrialization of High-Order Methods - A Top-Down Approach). The goal of this project was the improvement, utilization and demonstration of innovative higher-order simulation capabilities for large-scale aerodynamic application challenges in the aircraft industry. The IDIHOM consortium consisted of 21 organizations, including aircraft manufacturers, software vendors, as well as the major European research establishments and several universities, all of them with proven expertise in the field of computational fluid dynamics. After a general introduction to the project, the book reports on new approaches for curved boundary-grid generation, high-order solution methods and visualization techniques. It summarizes the achievements, weaknesses and perspectives of the new simulation capabilities developed by the project partners for various industrial applications, and includes internal- and external-aerodynamic as well as multidisciplinary test cases.
This book explores the outcomes on flow control research activities carried out within the framework of two EU-funded projects focused on training-through-research of Marie Sklodowska-Curie doctoral students. The main goal of the projects described in this monograph is to assess the potential of the passive- and active-flow control methods for reduction of fuel consumption by a helicopter. The research scope encompasses the fields of structural dynamics, fluid flow dynamics, and actuators with control. Research featured in this volume demonstrates an experimental and numerical approach with a strong emphasis on the verification and validation of numerical models. The book is ideal for engineers, students, and researchers interested in the multidisciplinary field of flow control.
This book collects selected papers from the 27th Conference of Spacecraft TT&C Technology in China held in Guangzhou on November 9-12, 2014. The book features state-of-the-art studies on spacecraft TT&C in China with the theme of "Wider Space for TT&C". To meet requirements of new space endeavors, especially China's deep-space programs, China's spacecraft TT&C systems shall "go farther, measure more accurately and control better with higher efficacy". Researchers and engineers in the field of aerospace engineering and communication engineering can benefit from the book.
This book is based on the findings, conclusions and recommendations of the Global Space Governance study commissioned by the 2014 Montreal Declaration that called upon civil society, academics, governments, the private sector, and other stakeholders to undertake an international interdisciplinary study. The study took three years to complete. It examines the drivers of space regulations and standards, key regulatory problems, and especially addresses possible improvements in global space governance. The world's leading experts led the drafting of chapters, with input from academics and knowledgeable professionals in the public and private sectors, intergovernmental organizations, and nongovernmental organizations from all the regions of the world with over 80 total participants. This book and areas identified for priority action are to be presented to the UN Committee on the Peaceful Uses of Outer Space and it is hoped will be considered directly or indirectly at the UNISPACE+50 event in Vienna, Austria, in 2018. The report, a collective work of all the contributors, includes objective analysis and frank statements expressed without pressure of political, national, and occupational concerns or interest. It is peer-reviewed and carefully edited to ensure its accuracy, preciseness, and readability. It is expected that the study and derivative recommendations will form the basis for deliberations and decisions at international conferences and meetings around the world on the theme of global space governance. This will hopefully include future discussion at the UN Committee on the Peaceful Uses of Outer Space.
This textbook provides students and the broader aviation community with a complete, accessible guide to the subject of human factors in aviation. It covers the history of the field before breaking down the physical and psychological factors, organizational levels, technology, training, and other pivotal components of a pilot and crew's routine work in the field. The information is organized into easy-to-digest chapters with summaries and exercises based on key concepts covered, and it is supported by more than 100 full-color illustrations and photographs. All knowledge of human factors required in aviation university studies is conveyed in a concise and casual manner, through the use of helpful margin notes and anecdotes that appear throughout the text.
Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems' inputs, states measurements, and restrictions on the interconnection topology between the aerial vehicles in the team are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers and industrial engineers from robotics, control engineering and aerospace communities. It also serves as a complementary reading for graduate students involved in research related to flying robotics, aerospace, control of under-actuated systems, and nonlinear control theory
This thesis presents fundamental work that explains two mysteries concerning the trajectory of interplanetary spacecraft. For the first problem, the so-called Pioneer anomaly, a wholly new and innovative method was developed for computing all contributions to the acceleration due to onboard thermal sources. Through a careful analysis of all parts of the spacecraft Pioneer 10 and 11, the application of this methodology has yielded the observed anomalous acceleration. This marks a major achievement, given that this problem remained unsolved for more than a decade. For the second anomaly, the flyby anomaly, a tiny glitch in the velocity of spacecraft that perform gravity assisting maneuvers on Earth, no definitive answer is put forward; however a quite promising strategy for examining the problem is provided and a new mission is proposed. The proposal largely consists in using the Galileo Navigational Satellite System to track approaching spacecraft, and in considering a small test body that approaches Earth from a highly elliptic trajectory.
The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on "Innovative Design and Development Practices in Aerospace and Automotive Engineering (I-DAD 2016)". The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.
This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China's spacecraft engineering projects. The book's closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage.
This Second Edition continues the fine tradition of its predecessor by exploring the various automatic control systems in aircraft and on board missiles. Considerably expanded and updated, it now includes new or additional material on: the effectiveness of beta-beta feedback as a method of obtaining coordination during turns using the F-15 as the aircraft model; the root locus analysis of a generic acceleration autopilot used in many air-to-air and surface-to-air guided missiles; the guidance systems of the AIM-9L Sidewinder as well as bank-to-turn missiles; various types of guidance, including proportional navigation and line-of-sight and lead-angle command guidance; the coupling of the output of a director fire control system into the autopilot; the analysis of multivariable control systems; and methods for modeling the human pilot, plus the integration of the human pilot into an aircraft flight control system. Also features many new additions to the appendices.
This book provides its reader with a good understanding of the stabilization of switched nonlinear systems (SNS), systems that are of practical use in diverse situations: design of fault-tolerant systems in space- and aircraft; traffic control; and heat propagation control of semiconductor power chips. The practical background is emphasized throughout the book; interesting practical examples frequently illustrate the theoretical results with aircraft and spacecraft given particular prominence. Stabilization of Switched Nonlinear Systems with Unstable Modes treats several different subclasses of SNS according to the characteristics of the individual system (time-varying and distributed parameters, for example), the state composition of individual modes and the degree and distribution of instability in its various modes. Achievement and maintenance of stability across the system as a whole is bolstered by trading off between individual modes which may be either stable or unstable or by exploiting areas of partial stability within all the unstable modes. The book can be used as a reference for academic research on switched systems or used by graduate students of control theory and engineering. Readers should have studied linear and nonlinear system theory and have some knowledge of switched and hybrid systems to get the most from this monograph.
With major structural changes will need to be thoroughly reexamined. This book discusses decision making for problems where a particular decision affects the options available at the next decision time. The deregulation of the electric utility industry will shift the emphasis from a cost-based to a price-based approach; the resulting occuring in the electric power industry, many long-standing ways of operation increase in uncertainty requires that a stochastic approach be adopted for optimal decision-making. This monograph covers a wide range of topics including dynamic programming, ordinal optimization, price modelling and forecasting, future market decisions, reserve market decisions and decisions in a congested market place. |
![]() ![]() You may like...
Nonlinear Kalman Filter for Multi-Sensor…
Jean-Philippe Condomines
Hardcover
R2,664
Discovery Miles 26 640
The Entomologist's Record and Journal of…
James William 1858-1911 Tutt
Hardcover
R899
Discovery Miles 8 990
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
Aeronautics; v. 11-12
Aeronautical Society of America, Aero Club of Pennsylvania
Hardcover
R1,102
Discovery Miles 11 020
Flight Dynamics and System…
Jared A. Grauer, James E. Hubbard Jr.
Hardcover
R3,168
Discovery Miles 31 680
Orbital Mechanics and Formation Flying…
Pedro A. Capo-Lugo, P.M. Bainum
Hardcover
R4,503
Discovery Miles 45 030
|