![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology > General
Following the successful 1st CEAS (Council of European Aerospace Societies) Specialist Conference on Guidance, Navigation and Control (CEAS EuroGNC) held in Munich, Germany in 2011, Delft University of Technology happily accepted the invitation of organizing the 2nd CEAS EuroGNC in Delft, The Netherlands in 2013. The goal of the conference is to promote new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems using on-board sensing, computing and systems. A great push for new developments in GNC are the ever higher safety and sustainability requirements in aviation. Impressive progress was made in new research fields such as sensor and actuator fault detection and diagnosis, reconfigurable and fault tolerant flight control, online safe flight envelop prediction and protection, online global aerodynamic model identification, online global optimization and flight upset recovery. All of these challenges depend on new online solutions from on-board computing systems. Scientists and engineers in GNC have been developing model based, sensor based as well as knowledge based approaches aiming for highly robust, adaptive, nonlinear, intelligent and autonomous GNC systems. Although the papers presented at the conference and selected in this book could not possibly cover all of the present challenges in the GNC field, many of them have indeed been addressed and a wealth of new ideas, solutions and results were proposed and presented. For the 2nd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with good journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedingsbased on the results and recommendations from the reviewers.
Beginning with the basic elements that differentiate space programs from other management challenges, Space Program Management explains through theory and example of real programs from around the world, the philosophical and technical tools needed to successfully manage large, technically complex space programs both in the government and commercial environment. Chapters address both systems and configuration management, the management of risk, estimation, measurement and control of both funding and the program schedule, and the structure of the aerospace industry worldwide.
This book discusses all spacecraft attitude control-related topics: spacecraft (including attitude measurements, actuator, and disturbance torques), modeling, spacecraft attitude determination and estimation, and spacecraft attitude controls. Unlike other books addressing these topics, this book focuses on quaternion-based methods because of its many merits. The book lays a brief, but necessary background on rotation sequence representations and frequently used reference frames that form the foundation of spacecraft attitude description. It then discusses the fundamentals of attitude determination using vector measurements, various efficient (including very recently developed) attitude determination algorithms, and the instruments and methods of popular vector measurements. With available attitude measurements, attitude control designs for inertial point and nadir pointing are presented in terms of required torques which are independent of actuators in use. Given the required control torques, some actuators are not able to generate the accurate control torques, therefore, spacecraft attitude control design methods with achievable torques for these actuators (for example, magnetic torque bars and control moment gyros) are provided. Some rigorous controllability results are provided. The book also includes attitude control in some special maneuvers, such as orbital-raising, docking and rendezvous, that are normally not discussed in similar books. Almost all design methods are based on state-spaced modern control approaches, such as linear quadratic optimal control, robust pole assignment control, model predictive control, and gain scheduling control. Applications of these methods to spacecraft attitude control problems are provided. Appendices are provided for readers who are not familiar with these topics.
This book describes systematically the theory and technology of the precision forming of large, complex and thin-walled superalloy castings for aircraft engines, covering all the important basic aspects of the manufacturing process, including process design, wax pattern, ceramic molds, casting and solidification, heat treatment, repair casting and dimension precision control. The correlation of casting defects, structural characteristics and performance of castings is revealed through a range of tests. It also discusses the latest technologies and advances in this field - such as imaging the solidification process by means of synchrotron radiography, 3D computerized tomography and reconstruction of microporosity defects, analysis and diagnosis of error sources for dimension over-tolerance and adjusted pressure casting technology - which are of particular interest. Providing essential insights, the book offers a valuable guide to the design and manufacture of superalloy casting parts for aircraft engines.
Aircraft performance is one of the key aspects of the aircraft industry. Starting with the consideration that performance theory is the defining factor in aircraft design, the author then covers the measurement of performance for the certification, management and operation of aircraft. This practical book discusses performance measures which relate to airworthiness certificates (a legal requirement), as well as those needed when compiling the aircraft performance manual for the aircraft. In addition, operational performance is covered, including the financial considerations required by airlines to ensure maximisation of commercial return. Available in North and South America from the AIAA, 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191, USA
This monograph presents a new analytical approach to the design of proportional-integral-derivative (PID) controllers for linear time-invariant plants. The authors develop a computer-aided procedure, to synthesize PID controllers that satisfy multiple design specifications. A geometric approach, which can be used to determine such designs methodically using 2- and 3-D computer graphics is the result. The text expands on the computation of the complete stabilizing set previously developed by the authors and presented here. This set is then systematically exploited to achieve multiple design specifications simultaneously. These specifications include classical gain and phase margins, time-delay tolerance, settling time and H-infinity norm bounds. The results are developed for continuous- and discrete-time systems. An extension to multivariable systems is also included. Analytical Design of PID Controllers provides a novel method of designing PID controllers, which makes it ideal for both researchers and professionals working in traditional industries as well as those connected with unmanned aerial vehicles, driverless cars and autonomous robots.
This book provides different engineering, management, economic solutions and methodologies regarding sustainable aviation, giving readers a great sense of how sustainable aviation works at the "systems" level. The aviation industry is one of the fastest growing in the world and can make a positive contribution to sustainability. This book presents environmental policies and their application to the aviation industry and evaluates solutions provided to address pollution. Chapters discuss novel technologies that the aviation industry can apply to reduce its environmental impact and become more energy efficient.
Humans and space When faced with the issue of space exploration, one generally has an idea of the ?elds of study and disciplines that are involved: technology, physics and chemistry, robotics, astronomy and planetary science, space biology and medicine, disciplines which are usually referred to as the ?sciences?. In recent discussions, the human element of space exploration has attracted more and more the interest of the space sciences. As a consequence, adjacent disciplines have gained in relevance in space exploration and space research, in times when human space ?ights are almost part of everyday life. These disciplines include psychology and sociology, but also history, philosophy, anthropology, cultural studies, political sciences and law. The cont- bution of knowledge in these ?elds plays an important role in achieving the next generation of space exploration, where humans will resume exploring the Moon and, eventually, Mars, and wherespacetourism isbeginningtobedeveloped. With regard to technology, one might soon be prepared for this. Much less is this the case with space exploration by humans, rather than by robots. Robotic explorations to other planets across the solar system have developed in the past 50 years, since the beginning of the ?space age? with the presence of humans in nearby space and the landing on the Moon. Space exploration is now not only focused on technological achievements, asitsdevelopmentalsohassocial, culturalandeconomicimpacts. This makes human space exploration a topic to address in a cross-disciplinary mann
The field of Large Eddy Simulation (LES) and hybrids is a
vibrant research area. This book runs through all the potential
unsteady modelling fidelity ranges, from low-order to LES. The
latter is probably the highest fidelity for practical aerospace
systems modelling. Cutting edge new frontiers are defined. This work has relevance to the general field of CFD and LES and
to a wide variety of non-aerospace aerodynamic systems (e.g. cars,
submarines, ships, electronics, buildings). Topics treated include
unsteady flow techniques; LES and hybrids; general numerical
methods; computational aeroacoustics; computational aeroelasticity;
coupled simulations and turbulence and its modelling (LES, RANS,
transition, VLES, URANS). The volume concludes by pointing forward
to future horizons and in particular the industrial use of LES. The
writing style is accessible and useful to both academics and
industrial practitioners.
An introduction to orbital mechanics and spacecraft attitude dynamics Foundations of Space Dynamics offers an authoritative text that combines a comprehensive review of both orbital mechanics and dynamics. The author a noted expert in the field covers up-to-date topics including: orbital perturbations, Lambert's transfer, formation flying, and gravity-gradient stabilization. The text provides an introduction to space dynamics in its entirety, including important analytical derivations and practical space flight examples. Written in an accessible and concise style, Foundations of Space Dynamics highlights analytical development and rigor, rather than numerical solutions via ready-made computer codes. To enhance learning, the book is filled with helpful tables, figures, exercises, and solved examples. This important book: Covers space dynamics with a systematic and comprehensive approach Is designed to be a practical text filled with real-world examples Contains information on the most current applications Includes up-to-date topics from orbital perturbations to gravity- gradient stabilization Offers a deep understanding of space dynamics often lacking in other textbooks Written for undergraduate and graduate students and professionals in aerospace engineering, Foundations of Space Dynamics offers an introduction to the most current information on orbital mechanics and dynamics.
This book simulates the complete trajectories (flight and subsequent ground run) of golf shots using the aerodynamic and material properties of golf balls, and establish the significance of wind's impact on gameplay. It also presents insight into how physical parameters like launch conditions (speed, angle and spin-rate) and wind conditions affect the trajectory of a golf ball. It discusses the specific effects of wind on the flight trajectory and explore the consequences of effect of wind direction; impact of golf club selection on the wind-induced deviation; strategies and their effectiveness to counter the diversion due to wind; and the sensitivity of the trajectory to aerodynamic characteristics of golf balls. Furthermore, the impact of wind on a player's strategy is elucidated with cases studies on the renowned holes of three golf courses: (i) Hole 17, TPC Sawgrass, (ii) Hole 8, Muirfield Golf Club, and (iii) Hole 18, Pebble beach Golf links. It presents an integrated mathematical model and quantitative data on ball trajectory accompanied by insights and illustrations for players, golf-course designers, ball manufacturers, scientific community, and golf enthusiasts. This book will be useful for researchers and professionals in the fields of aerodynamics engineering, sports science and physics. Additionally, this book will be a good read for golf players and coaches, golf-course designers, as well as golf-ball manufacturers.
These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
TheseriesAdvancesinIndustrialControl aimsto reportandencouragete- nologytransferincontrolengineering.Therapiddevelopmentofcontrolte- nology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies, new challenges. Much of this devel- ment work resides in industrial reports, feasibility study papers and the - ports of advanced collaborative projects. The series o?ers an opportunity for researchersto present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Autonomy for aerial, land, and marine (surface and underwater) vehicles is an ever-expanding ?eld of industrial control engineering in which there is signi?cant international interest. Currently, there are many prototypes and working autonomous vehicles in all the ?elds of application; however, some areas are better developed than others. Meanwhile in the control conference literature it is possible to see that frontier research has reached the pr- lems of working with groups, convoys or swarms of cooperating autonomous vehicles. The tasks that autonomous mobiles can tackle are very often either h- ardous, or, conversely, routine, wheretheuseofaninsitu humanoperatoristo be avoided, or simply technically (and economically) unnecessary. Typically, such tasks involve inspection, monitoring, and detection. For example, - manned aerial vehicles (UAVs) can be used to perform airborne sea searches, inspect long-distance power lines or oil and gas pipelines (particularly those traversing hostile, or hazardous terrain), monitor environmental or meteo- logical variables and survey crop production and forestry resources. This list is by no means exhaustive and UAVs can perform many other valuable tas
The Space Age is nearly 50 years old but exploration of the outer planets and beyond has only just begun. Deep-Space Probes Second Edition draws on the latest research to explain why we should explore beyond the edge of the Solar System and how we can build highly sophisticated robot spacecraft to make the journey. Many technical problems remain to be solved, among them propulsion systems to permit far higher velocities, and technologies to build vehicles a fraction of the size of today's spacecraft. Beyond the range of effective radio control, robot vehicles for exploring deep space will need to be intelligent, 'thinking' craft - able to make vital decisions entirely on their own. Gregory Matloff also looks at the possibility for human travel into interstellar space, and some of the immense problems that such journeys would entail. This second edition includes an entirely new chapter on holographic message plaques for future interstellar probes - a NASA-funded project.
During September 24-26, 2001, the Faculty of Aerospace Engineering of the Delft University of Technology in the Netherlands organised the Glare - the New Material for Aircraft Conference, an international conference on the relationship between design, material choice and application of aircraft materials with respect to new developments in industry. Eminent representatives from the aircraft manufacturing world, including manufacturers, airlines, airports, universities, governments and aviation authorities, were present at this conference to meet and exchange ideas - see the group photo on the next two pages. The fact that the conference was held just two weeks after 'September 11, 2001' put things in a rather unique perspective. The aim of the conference was to illustrate the many unique applications of the Glare family of fibre metal laminates and to provide for the exchange and distribution of information regarding this material in order to stimulate their acceptance and promote further application. The introduction of fibre metal laminates into the commercial aviation market took about 20 years' time. Introducing new technologies should not be taken lightly, however; the aircraft industry is by nature rather conservative and innovations must therefore be proven - a paradox actually - in all possible ways before they can be introduced in real aircraft structures. Not only do technical aspects play a role in this respect; historical, cultural, economical and political issues are equally important.
These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
Investigation of vortex wakes behind various aircraft, especially behind wide bodied and heavy cargo ones, is of both scientific and practical in terest. The vortex wakes shed from the wing's trailing edge are long lived and attenuate only atdistances of10-12kmbehindthe wake generating aircraft. The encounter of other aircraft with the vortex wake of a heavy aircraft is open to catastrophic hazards. For example, air refueling is adangerous operationpartly due to thepossibility of the receiver aircraft's encountering the trailing wake of the tanker aircraft. It is very important to know the behavior of vortex wakes of aircraft during theirtakeoff andlanding operations whenthe wakes canpropagate over the airport's ground surface and be a serious hazard to other depart ing or arriving aircraft. This knowledge can help in enhancing safety of aircraft's movements in the terminal areas of congested airports where the threat of vortex encounters limits passenger throughput. Theoreticalinvestigations of aircraft vortex wakes arebeingintensively performedinthe major aviationnations.Usedforthispurpose are various methods for mathematical modeling of turbulent flows: direct numerical simulation based on the Navier-Stokes equations, large eddy simulation using the Navier-Stokes equations in combination with subrigid scale modeling, simulation based on the Reynolds equations closed with a differential turbulence model. These approaches are widely used in works of Russian and other countries' scientists. It should be emphasized that the experiments in wind tunnels and studies of natural vortex wakes behind heavy and light aircraft in flight experiments are equally important.
The combined observational power of the multiple earth observing satellites is currently not being harnessed holistically to produce more durable societal benefits. We are not able to take complete advantage of the prolific amount of scientific output and remote sensing data that are emerging rapidly from satellite missions and convert them quickly into decision-making products for users. The current application framework we have appears to be an analog one lacking the absorption bandwidth required to handle scientific research and the voluminous (petabyte-scale) satellite data. This book will tackle this question: "How do we change this course and take full advantage of satellite observational capability for a more sustainable, happier and safer future in the coming decades?"
< div="">This textbook on Fundamentals of Gas Dynamics will help students with a background in mechanical and/or aerospace engineering and practicing engineers working in the areas of aerospace propulsion and gas dynamics by providing a rigorous examination of most practical engineering problems. The book focuses both on the basics and more complex topics such as quasi one dimensional flows, oblique shock waves, Prandtl Meyer flow, flow of steam through nozzles, etc. End of chapter problems, solved illustrations and exercise problems are presented throughout the book to augment learning. ^
This book compiles a variety of experimental data on blast waves. The book begins with an introductory chapter and proceeds to the topic of blast wave phenomenology, with a discussion on Rankine-Hugoniot equations and the Friedlander equation, used to describe the pressure-time history of a blast wave. Additional topics include arrival time measurement, the initiation of detonation by exploding wires, a discussion of TNT equivalency, and small scale experiments. Gaseous and high explosive detonations are covered as well. The topics and experiments covered were chosen based on the comparison of used scale sizes, from small to large. Each characteristic parameter of blast waves is analyzed and expressed versus scaled distance in terms of energy and mass. Finally, the appendix compiles a number of polynomial laws that will prove indispensable for engineers and researchers.
Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a complex process involving the calculus of variations, the authors carefully lay out step-by-step the most important theorems and concepts. Numerous examples are worked to demonstrate how to apply the theories to everything from classical problems (e.g., crossing a river in minimum time) to engineering problems (e.g., minimum-fuel launch of a satellite). Throughout the book use is made of the time-optimal launch of a satellite into orbit as an important case study with detailed analysis of two examples: launch from the Moon and launch from Earth. For launching into the field of optimal solutions, look no further!
These proceedings present selected research papers from CSNC 2018, held during 23rd-25th May in Harbin, China. The theme of CSNC 2018 is Location, Time of Augmentation. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC 2018, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications. |
![]() ![]() You may like...
Health Monitoring and Personalized…
Alexia Briassouli, Jenny Benois-Pineau, …
Hardcover
R3,645
Discovery Miles 36 450
Cyber-Physical Systems - Digital…
Alla G. Kravets, Alexander A. Bolshakov, …
Hardcover
R4,656
Discovery Miles 46 560
Smart Systems Integration and Simulation
Nicola Bombieri, Massimo Poncino, …
Hardcover
R3,549
Discovery Miles 35 490
Radar and Radionavigation…
Anatoly Ivanovich Kozlov, Yuri Grigoryevich Shatrakov, …
Hardcover
R2,858
Discovery Miles 28 580
Digital Image Forensics - There is More…
Husrev Taha Sencar, Nasir Memon
Hardcover
R5,627
Discovery Miles 56 270
Enhanced Virtual Prototyping for…
Muhammad Hassan, Daniel Grosse, …
Hardcover
R3,119
Discovery Miles 31 190
Role of Single Board Computers (SBCs) in…
G. R. Kanagachidambaresan
Hardcover
R2,645
Discovery Miles 26 450
Pattern Classification of Medical…
Xiaoxia Yin, Sillas Hadjiloucas, …
Hardcover
R3,536
Discovery Miles 35 360
Applications of Hybrid Metaheuristic…
Diego Oliva, Salvador Hinojosa
Hardcover
R4,612
Discovery Miles 46 120
|