![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology > General
This book focuses on flight vehicles and their navigational systems, discussing different forms of flight structures and their control systems, from fixed wings to rotary crafts. Software simulation enables testing of the hardware without actual implementation, and the flight simulators, mechanics, glider development and navigation systems presented here are suitable for lab-based experimentation studies. It explores laboratory testing of flight navigational sensors, such as the magnetic, acceleration and Global Positioning System (GPS) units, and illustrates the six-axis inertial measurement unit (IMU) instrumentation as well as its data acquisition methodology. The book offers an introduction to the various unmanned aerial vehicle (UAV) systems and their accessories, including the linear quadratic regulator (LQR) method for controlling the rotorcraft. It also describes a Matrix Laboratory (MATLAB) control algorithm that simulates and runs the lab-based 3 degrees of freedom (DOF) helicopter, as well as LabVIEW software used to validate controller design and data acquisition. Lastly, the book explores future developments in aviation techniques.
The aim of this book is to introduce scientific ballooning to the many people who are interested in the use of balloons for scientific applications. The book offers a basic understanding of the engineering details and the scientific research giving rise to balloon activities going on today. Above all, the book will serve as a guidebook for young scientists and researchers seeking to become involved in space science and technology by participating in balloon projects. The book deals with three types of balloons: large stratospheric balloons used for scientific purposes, rubber balloons used for aerological observations, and planetary balloons to be used in the atmospheres of other planets. The book provides many figures and photographs, and offers a systematic description of balloon technologies and related matters from historical background to current research topics. The contents include a theoretical discussion of ballon shape design, analysis and synthesis of flight dynamics, actual launching procedure, flight operations, and typical applications of ballooning in various scientific fields. Detailed meteorological descriptions, especially of the Earth's stratosphere and the atmosphere of other planets, are provided for investigating actual flight behavior.
This book is dedicated to the problem of flight control over the sea at low altitudes, and is concerned particularly with Ekranoplanes.
This book is devoted to the PSI method. Its appearance was a reaction to the unsatisfactory situation in applications of optimization methods in engineering. After comprehensive testing of the PSI method in various fields of machine engineering it has become obvious that this method substantially surpasses all other available techniques in many respects. It has now become known that the PSI method is successfully used not only in machine design, at which it was initially aimed, but also in polymer chemistry, pharmacy, nuclear energy, biology, geophysics, and many other fields of human activity. To all appearances this method has become so popular for its potential of taking into account the specific features of applied optimization better than other methods, being, at the same time, comparatively simple and friendly, and because, unlike traditional optimization methods which are intended only for searching for optimal solutions, the PSI method is also aimed at correctly formulating engineering optimization problems. One well-known aircraft designer once said, "To solve an optimization problem in engineering means, first of all, to be able to state this problem properly." In this sense the PSI method has no competitors. Although this method has been presented in Russia in numerous papers and books, Western readers have had the opportunity to familiarize themselves with this method only recently (Ozernoy 1988; Lieberman 1991; Stadler and Dauer 1992; Dyer, Fishburn, Steuer, Wallenius, and Zionts 1992; Steuer and Sun 1995, etc. ).
This volume consists of papers presented at the Variational Analysis and Aerospace Engineering Workshop II held in Erice, Italy in September 2010 at the International School of Mathematics "Guido Stampacchia." The workshop provided a platform for aerospace engineers and mathematicians (from universities, research centers and industry) to discuss the advanced problems requiring an extensive application of mathematics. The presentations were dedicated to the most advanced subjects in engineering and, in particular to computational fluid dynamics methods, introduction of new materials, optimization in aerodynamics, structural optimization, space missions, flight mechanics, control theory and optimization, variational methods and applications, etc. This book will capture the interest of researchers from both academia and industry. "
Human migration to space will be the most profound catalyst for evolution in the history of humankind, yet this has had little impact on determining our strategies for this next phase of exploration. Habitation in space will require extensive technological interfaces between humans and their alien surroundings and how they are deployed will critically inform the processes of adaptation. As humans begin to spend longer durations in space-eventually establishing permanent outposts on other planets-the scope of technological design considerations must expand beyond the meager requirements for survival to include issues not only of comfort and well-being, but also of engagement and negotiation with the new planetary environment that will be crucial to our longevity beyond Earth. Approaching this question from an interdisciplinary approach, this dissertation explores how the impact of interior space architecture can meet both the physical and psychological needs of future space colonists and set the stage for humankind to thrive and grow while setting down new roots beyond Earth.
The book reports on advanced solutions to the problem of simulating wing and nacelle stall, as presented and discussed by internationally recognized researchers at the Closing Symposium of the DFG Research Unit FOR 1066. Reliable simulations of flow separation on airfoils, wings and powered engine nacelles at high Reynolds numbers represent great challenges in defining suitable mathematical models, computing numerically accurate solutions and providing comprehensive experimental data for the validation of numerical simulations. Additional problems arise from the need to consider airframe-engine interactions and inhomogeneous onset flow conditions, as real aircraft operate in atmospheric environments with often-large distortions. The findings of fundamental and applied research into these and other related issues are reported in detail in this book, which targets all readers, academics and professionals alike, interested in the development of advanced computational fluid dynamics modeling for the simulation of complex aircraft flows with flow separation.
The aviation community, in which the International Civil Aviation Organization (ICAO), the International Air Transport Association (IATA) and the Civil Air Navigation Services Organization (CANSO) play leading roles, is hard at work in bringing aviation into the 21st Century. In doing so, the United States and Europe have taken proactive steps forward in introducing modernization, particularly in moving towards more efficient air traffic management systems within NextGen and SESAR. Elsewhere, in the fields of personnel licensing, rules of the air, accident investigation and aeronautical charts and information, significant strides are being made in moving from mere regulation to implementation and assistance calculated to make all ICAO member States self sufficient in international civil aviation. However, these objectives can be achieved only if the aviation industry has a sustained understanding of the legal and regulatory principles applying to the various areas of air navigation. This book provides that discussion. Some of the subjects discussed in this book are: sovereignty in airspace; flight information and air defence identification zones; rules of the air; personnel licensing; meteorological services; operations of aircraft; air traffic services; accident and incident investigation; aerodromes; efficiency aspects of aviation and environmental protection; aeronautical charts and information; the carriage of dangerous goods; and NextGen and SESAR . Except for NextGen and SESAR, these subjects form the titles of the Annexes to the Chicago Convention that particularly involve the rights and liabilities of the key players involved in air navigation.
This work describes the historical evolution of a critical aspect of aerospace technology—avionics and navigation systems. This history is important to understanding current and future issues associated with aeronautics, space-flight development, and flight management, because avionics is crucial to commerical air traffic control and space flight. Samuel Fishbein provides a historical overview of aviation electronics and instrumentation, the evolution of automated systems and their integration, and the role of the pilot in this environment. In addition, he reviews the major elements comprising the flight management system and the evolution and operation of these instruments, discussing why the instrument panel is configured the way it is, and how ground and space-based components of the systems have influenced the design of airplane components.
This book explores the character and contours of the Asian Space Powers. At present, Asian states like China, Japan and India are found investing in space technologies with analogous social and scientific and probably with divergent military intents. Other Asian states like Israel, South Korea and Malaysia are also making investments in the space arena. States like Iran and North Korea are faulted for using space launches as a demonstrative tool to achieve strategic objectives. This work examines this entire maze of activities to unearth where these states are making these investments to accomplish their state-specific goal or are they also trying to surpass each other by engaging in competition. Explaining why and how these states are making investments towards achieving their socio-economic and strategic mandate this book infers that the possibility of Asian Space Race exists but is presently fairly diminutive.
This book reports on the German research initiative AeroStruct, a three-year collaborative project between universities and the aircraft industry. It describes the development of an integrated multidisciplinary simulation environment for aircraft analysis and optimization using high-fidelity methods. This system is able to run at a high level of automatism, thus representing a step forward with respect to previous ones. Its special features are: a CAD description that is independent from the disciplines involved, an automated CFD mesh generation and an automated structure model generation including a sizing process. The book also reports on test cases by both industrial partners and DLR demonstrating the advantages of the new environment and its suitability for the industry. These results were also discussed during the AeroStruct closing Symposium, which took place on 13-14 October 2015 at the DLR in Braunschweig, Germany. The book provides expert readers with a timely report on multidisciplinary aircraft design and optimization. Thanks to a good balance between theory and practice, it is expected to address an audience of both academics and professional, and to offer them new ideas for future research and development.
This book gathers the best articles presented by researchers and industrial experts at the International Conference on "Innovative Design and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018)". The papers discuss new design concepts, analysis and manufacturing technologies, with an emphasis on achieving improved performance by downsizing; improving the weight-to-strength ratio, fuel efficiency, and operational capability at room and elevated temperatures; reducing wear and tear; and addressing NVH aspects, while balancing the challenges of Euro IV/Barat Stage IV emission norms and beyond, greenhouse effects, and recyclable materials. The innovative methods discussed here offer valuable reference material for educational and research organizations, as well as industry, encouraging them to pursue challenging projects of mutual interest.
An unmanned aerial vehicle (UAV) is an aircraft that is equipped with necessary data processing units, sensors, automatic control and communications systems, and is capable of performing autonomously flight missions without a human pilot. Unmanned Rotorcraft Systems provides a complete treatment of the design of fully autonomous miniature rotorcraft UAVs. It is an integration of advanced technologies developed in communications, computing and control areas. In particular, it focuses on: the systematic hardware construction; software systems integration; aerodynamic modeling; and automatic flight control system design. Emphasis is extended to the cooperative control and flight formation of multiple UAVs, and vision-based ground target tracking and landing on moving platforms. Other issues such as the development of GPSless indoor micro aerial vehicles and vision-based navigation are also highlighted. The proposed monograph aims to explore the research and development of fully functional miniature UAV (unmanned-aerial-vehicle) rotorcraft. This consists of a small-scale basic rotorcraft with all necessary accessories onboard, and a ground station. The unmanned system is an integration of advanced technologies developed in communications, computing and control areas. It is an excellent testing ground for trialing and implementing modern control techniques. It is however a highly challenging process. The aerodynamics of a small-scale rotorcraft such as a hobby helicopter are similar to its full-scale counterpart but has some unique characteristics, such as the utilization of stabilizer bar and higher main/tail rotors rotation speed. Besides these, the strict limitation on payload also increases the difficulty on upgrading a small-scale rotorcraft to a UAV with full capacities. Based on its various characteristics and limitations, a light-weight but effective onboard computer system with corresponding onboard/ground software should be carefully designed to realize the system identification and automatic flight requirements. These issues will be addressed in detail in this monograph. Research on the following will be detailed: utilizing the vision-based system for accomplishing ground target tracking; attacking and landing; cooperative control and flight formation of muitiple unmanned rotorcraft; future research directions on the related areas. The book will be a good reference for researchers and students working on the related subjects. Unmanned Rotorcraft Systems will be of great value to practicing engineers in rotorcraft industries and to researchers in areas related to the development of unmanned systems in general. It may be used as a reference for advanced undergraduate and graduate students in aeronautics and astrinautics, electrical and mechanical engineering."
Stress, Vibration, and Wave Analysis in Aerospace Composites: SHM and NDE Applications presents a unified approach to studying and understanding stress, vibrations and waves in composite materials used in aerospace applications. Combining topics that are typically found across an array of various sources, the book starts by looking at the properties of various composite materials, progresses to coverage of an analysis of stress, vibration and waves and then concludes with a discussion of various structural health monitoring (SHM) and nondestructive evaluation (NDE) techniques and applications based on the analysis developed earlier in the book. Every chapter of the book contains a variety of worked-out examples to illustrate and tie together underlying theory and specific applications. The MATLAB code used to generate these examples is available on the book's companion website, as are solution documents and additional MATLAB code for problems and exercises featured in each chapter.
Accessible, friendly style, accentuating real-life experiences and ground-level practicalities for those already working within or hoping for a career in the business of air logistics. Packed with personal reports from global industry leaders for revealing insights into the industry and a rounded understanding. Addresses the reality of the impacts caused by the COVID-19 pandemic, and adds new content focusing on security and crime, the role of airports and road feeder services, and the range of typical air cargo products.
This interdisciplinary thesis involves the design and analysis of coordination algorithms on networks, identification of dynamic networks and estimation on networks with random geometries with implications for networks that support the operation of dynamic systems, e.g., formations of robotic vehicles, distributed estimation via sensor networks. The results have ramifications for fault detection and isolation of large-scale networked systems and optimization models and algorithms for next generation aircraft power systems. The author finds novel applications of the methodology in energy systems, such as residential and industrial smart energy management systems.
Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data have on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.
This is the first authored English book completely focused on global navigation satellite system reflectometry (GNSS-R). It consists of two main parts: the fundamental theory; and major applications, which include ocean altimetry, sea surface wind speed retrieval, snow depth measurement, soil moisture measurement, tsunami detection and sea ice detection. Striking a healthy balance between theory and practice, and featuring in-depth studies and extensive experimental results, the book introduces beginners to the fundamentals, while preparing experienced researchers to pursue advanced investigations and applications in GNSS-R.
JAXA 's Kaguya mission was successfully launched to the Moon on September 14, 2007 reaching its nominal 100 km circular orbit on October 19 after releasing two subsatellites Okina and Ouna in elliptical orbits with perilunes of 100 km and apolunes of 2400 and 800 km respectively. Observations were obtained for 10 months during the nominal mission beginning in mid-December 2007 followed by 8 month extended mission where data were obtained in lower orbits. The articles in this book were written by experts in each of the scientific areas of the Kaguya mission, and describe both the mission and the individual scientific investigations, including their objectives, the specifications of the instruments, their calibrations and initial results. This book is essential reading to all potential users of the Kaguya data and those interested in the scientific results of the mission, the properties of the lunar surface and crust and planetary exploration in general.
'Commerce In Space' discusses opportunities in the development of policies to use space technology for the improvement of life on earth.
This book discusses the recent advances in aircraft design methodologies. It provides an overview of topics such as shape optimization, robust design and aeroelasticity, focusing on fluid-structure numerical methodologies to address static and dynamic aeroelastic problems. It demonstrates that the capability to evaluate the interaction between aerodynamics, inertia and elastic forces is important to avoid drag penalties, control system efficiency loss and generation of potentially dangerous phenomena, such as divergence, control reversal and flutter. The book particularly highlights the advances in "high fidelity" CFD-CSM coupling, describing the latest experimental research to validate the numerical fluid-structure interaction analysis methodologies resulting from the EU-funded RBF4AERO and RIBES projects.
The Commission on Accreditation of Medical Transport Systems (CAMTS) has been accrediting air and ground transport services since 1991. One of the most significant needs the Commission has recognized is to assist transport services in creating a culture that supports safety and quality for both crews and patients. Most of the helicopter EMS (emergency medical service) accidents and many ground ambulance accidents can be attributed to human factors and systems designs that lead to poor decision-making. Management commitment is vital to create and maintain a culture that supports risk assessment, accountability, professionalism and organizational dynamics. This reference book has been created by CAMTS to address this need directly and comprehensively. It offers a groundbreaking collection of expert insights and practical solutions that can be used by EMS, Fire and Rescue, public and private services, and professional emergency and transport professionals worldwide. Quoting from the foreword written by the late Robert L. Helmreich, Professor Emeritus of Psychology at The University of Texas Human Factors Research Project, 'This is an important book which should be required reading for everyone involved in patient transport, from managers and dispatchers to those at the sharp end... The experienced and able authors and editors of this work use culture as the overarching concept needed to maximize safety while delivering patients expeditiously.'
This book gathers contributions to the 20th biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. Though the book's primary emphasis is on the aerospace context, it also addresses further important applications, e.g. in ground transportation and energy.
|
![]() ![]() You may like...
Systematic Complex Problem Solving in…
Denis Cavallucci, Stelian Brad, …
Hardcover
R2,957
Discovery Miles 29 570
International Brigade Against Apartheid…
Ronnie Kasrils, Muff Andersson, …
Paperback
Applications of Fibonacci Numbers…
G.E. Bergum, Andreas N. Philippou, …
Hardcover
R3,262
Discovery Miles 32 620
|