![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Aerospace & aviation technology > General
This book is about aerospace sensors, their principles of operation, and their typical advantages, shortcomings, and vulnerabilities. They are described in the framework of the subsystems where they function and in accordance with the flight mission they are designed to serve. The book is intended for students at the advanced undergraduate or graduate level and for research engineers who need to acquire this kind of knowledge. An effort has been made to explain, within a uniform framework of mathematical modeling, the physics upon which a certain sensor concept is based, its construction, its dynamics, and its error sources and their corresponding mathematical models. Equipped with such knowledge and understanding, the student or research engineer should be able to get involved in research and development activities of guidance, control, and navigation systems and to contribute to the initiation of novel ideas in the aerospace sensor field. As a designer and systems engineer, he should be able to correctly interpret the various items in a technical data list and thus to interact intelligently with manufacturers' representatives and other members of an R&D team. Much of the text has evolved from undergraduate and graduate courses given by the author during the past seventeen years at the Department of Aerospace Engineering at the Technion- Israel Institute of Technology and from his earlier research and development experience in flight control, guidance, navigation, and avionics at the Ministry of Defense Central Research Institute.
Aviation safety and astronautics safety are taught as technical subjects informed, for the most part, by quantitative methods. Here, as in other fields, safety is often framed as an engineering problem requiring mathematics-informed solutions. This book argues that the socio-technical approach, encompassing theories grounded in sociology and psychology - such as active learning, high-reliability organising, mindfulness, leadership, followership and empowerment - has much to contribute to the safety performance of these vital industries. It sets out to inspire professionals to embed the whole-system approach into design and operation regimen and describes the reputational and financial benefits to manufacturers and operators that accrue from adopting a whole-system approach to design and operation. The book defines the socio-technical approach to risk assessment and management in aviation and astronautics (astronautics is taken to mean "the design and operation of vehicles for use beyond the earth's atmosphere"), then demonstrates the strengths and weaknesses of this approach through case studies of, for example, the Boeing 737MAX-8 accidents and the loss of the SpaceShipTwo orbiter. Grounding the discourse in familiar case studies engages busy aviation and astronautics professionals. The book's arguments are explained in such a way that they are readily comprehensible to non-experts. Key concepts are defined within a glossary. Photographs, charts and diagrams illustrate key points. Written for a practitioner audience, specifically aviation and astronautics professionals, this book provides a valuable and accessible social sciences perspective on safety that will be directly relevant to their roles.
Aviation safety and astronautics safety are taught as technical subjects informed, for the most part, by quantitative methods. Here, as in other fields, safety is often framed as an engineering problem requiring mathematics-informed solutions. This book argues that the socio-technical approach, encompassing theories grounded in sociology and psychology - such as active learning, high-reliability organising, mindfulness, leadership, followership and empowerment - has much to contribute to the safety performance of these vital industries. It sets out to inspire professionals to embed the whole-system approach into design and operation regimen and describes the reputational and financial benefits to manufacturers and operators that accrue from adopting a whole-system approach to design and operation. The book defines the socio-technical approach to risk assessment and management in aviation and astronautics (astronautics is taken to mean "the design and operation of vehicles for use beyond the earth's atmosphere"), then demonstrates the strengths and weaknesses of this approach through case studies of, for example, the Boeing 737MAX-8 accidents and the loss of the SpaceShipTwo orbiter. Grounding the discourse in familiar case studies engages busy aviation and astronautics professionals. The book's arguments are explained in such a way that they are readily comprehensible to non-experts. Key concepts are defined within a glossary. Photographs, charts and diagrams illustrate key points. Written for a practitioner audience, specifically aviation and astronautics professionals, this book provides a valuable and accessible social sciences perspective on safety that will be directly relevant to their roles.
Addresses the composites development process including damage detection and repair of composites for aerospace application Covers research on multi-scale process modelling, material modelling, self-healing, repairing and their analysis Concentrates on repair of composites for weight sensitive applications in automobile and aerospace areas Analyses materials processing and materials design perspective Details composite joints, their failure, and operation of aircraft component under various environments
This book provides a deep insight to which extent further improvement should be envisaged to ensure and improve the sustainable development beyond 2030 (the Sustainable Development Goals is a set of 17 global goals with 169 associated targets which the state community adopted in 2015). As the world, its environment, economy and society is getting more and more technical advanced, it is of high interest to analyze how space and its various applications can support this development. Once the Goals of the "2030 Agenda for Sustainable Development" will be achieved new challenges are waiting. The analysis takes into account a proactive use of artificial intelligence for the development based on space infrastructure. Another important aspect revolves around the economic development which asks for further analysis of the cryptocurrencies relationship with space applications and how to use space based cryptocurrencies for development. Environment-wise the challenges for a sustainable development on Earth i.e. water supply, but also in outer space are requested ensuring a sustainable exploration and exploitation of space and its orbital resources. The book also highlights possible contributions of the post-2030 space industry to global economic development based on satellite technology and the enlargement of the scope of application of satellite data in administration and Justice to ensure development of effective, accountable and transparent institutions at all levels to promote growth, stability and security and peace on global level.
Composites Innovation: Perspectives on Advancing the Industry provides a panoramic view of innovations in the composites industry, including discussions from business leaders and the university research community on advanced applications in North America, advances in recycling of composites, the use of artificial intelligence, nanocomposites, and emerging smart composites technology. The book is arranged in five key segments including: how composites fit into our world; the basics of the technology; customer insights; pushing the boundaries with concepts from outside the world of composites and emerging composites technologies; and paths forward to find competitive and effective solutions in a timely manner. Key Features Considers sustainability and innovation as driving forces for the growth of composites Explores materials and process development, including chopped and continuous fiber systems Provides a landscape of the status of intellectual property and patents Discusses use of artificial intelligence to improve business systems with case studies and a new disciplined approach to ideation and innovation Features chapters by an accomplished group of global business and technology leaders With contributing authors spanning 15 time zones to pioneer new solutions with composite materials, this book provides an excellent resource for composites business leaders, researchers and educators, and industry professionals, as well as new entrants to this vibrant community.
This volume contains the proceedings of the Workshop on Com bustion, sponsored by the Institute for Computer Applications in Science and Engineering (ICASE) and the NASA Langley Research Center (LaRC). It was held on October 12-14, 1992, and was the sec ond workshop in the series on the subject. The first was held in 1989, and its proceedings were published by Springer-Verlag under the title "Major Research Topics in Combustion," edited by M. Y. Hussaini, A. Kumar, and R. G. Voigt. The focus of the second workshop was directed towards the development, analysis, and application of basic models in high speed propulsion of particular interest to NASA. The exploration of a dual approach combining asymptotic and numerical methods for the analysis of the models was particularly encouraged. The objectives of this workshop were i) the genesis of models that would capture or reflect the basic pllysical phenomena in SCRAMJETs and/or oblique detonation-wave engines (ODWE), and ii) the stimulation of a greater interaction between NASA exper imental research community and the academic community. The lead paper by D. Bushnell on the status and issues of high speed propulsion relevant to both the SCRAMJET and the ODWE parallels his keynote address which set the stage of the workshop. Following the lead paper were five technical sessions with titles and chairs: Experiments (C. Rogers), Reacting Free Shear Layers (C. E. Grosch), Detonations (A. K. Kapila), Ignition and Struc ture (J. Buckmaster), and Unsteady Behaviour ('1'. L. Jackson)."
This successful book gives an introduction to the basics of aerothermodynamics, as applied in particular to winged re-entry vehicles and airbreathing hypersonic cruise and acceleration vehicles. The book gives a review of the issues of transport of momentum, energy and mass, real-gas effects as well as inviscid and viscous flow phenomena. In this second, revised edition the chapters with the classical topics of aerothermodynamics more or less were left untouched. The access to some single topics of practical interest was improved. Auxiliary chapters were put into an appendix. The recent successful flights of the X-43A and the X-51A indicate that the dawn of sustained airbreathing hypersonic flight now has arrived. This proves that the original approach of the book to put emphasis on viscous effects and the aerothermodynamics of radiation-cooled vehicle surfaces was timely. This second, revised edition even more accentuates these topics. A new, additional chapter treats examples of viscous thermal surface effects. Partly only very recently obtained experimental and numerical results show the complexity of such phenomena (dependence of boundary-layer stability, skin friction, boundary-layer thicknesses, and separation on the thermal state of the surface) and their importance for airbreathing hypersonic flight vehicles, but also for any other kind of hypersonic vehicle.
This book explores the design of optimal trajectories for space maneuver vehicles (SMVs) using optimal control-based techniques. It begins with a comprehensive introduction to and overview of three main approaches to trajectory optimization, and subsequently focuses on the design of a novel hybrid optimization strategy that combines an initial guess generator with an improved gradient-based inner optimizer. Further, it highlights the development of multi-objective spacecraft trajectory optimization problems, with a particular focus on multi-objective transcription methods and multi-objective evolutionary algorithms. In its final sections, the book studies spacecraft flight scenarios with noise-perturbed dynamics and probabilistic constraints, and designs and validates new chance-constrained optimal control frameworks. The comprehensive and systematic treatment of practical issues in spacecraft trajectory optimization is one of the book's major features, making it particularly suited for readers who are seeking practical solutions in spacecraft trajectory optimization. It offers a valuable asset for researchers, engineers, and graduate students in GNC systems, engineering optimization, applied optimal control theory, etc.
This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China's spacecraft engineering projects. The book's closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage.
Aircraft Design Concepts: An Introductory Course introduces the principles of aircraft design through a quantitative approach developed from the author's extensive experience in teaching aircraft design. Building on prerequisite courses, the text develops basic design skills and methodologies, while also explaining the underlying physics. The book uses a historical approach to examine a wide range of aircraft types and their design. Numerous charts, photos, and illustrations are provided for in-depth view of aeronautical engineering. It addresses conventional tail-aft monoplanes, "flying-wing", biplane, and canard configurations. Providing detailed analysis of propeller performance, the book starts with simple blade-element theory and builds to the Weick method. Written for senior undergraduate and graduate students taking a single-semester course on Aircraft Design or Aircraft Performance, the book imparts both the technical knowledge and creativity needed for aircraft design.
"Commercial Airplane Design Principles" is a succinct, focused text covering all the information required at the preliminary stage of aircraft design: initial sizing and weight estimation, fuselage design, engine selection, aerodynamic analysis, stability and control, drag estimation, performance analysis, and economic analysis. The text places emphasis on making informed choices from an
array of competing options, and developing the confidence to do
so.
The International Conference on Intelligent Unmanned Systems 2011 was organized by the International Society of Intelligent Unmanned Systems and locally by the Center for Bio-Micro Robotics Research at Chiba University, Japan. The event was the 7th conference continuing from previous conferences held in Seoul, Korea (2005, 2006), Bali, Indonesia (2007), Nanjing, China (2008), Jeju, Korea (2009), and Bali, Indonesia (2010). ICIUS 2011 focused on both theory and application, primarily covering the topics of robotics, autonomous vehicles, intelligent unmanned technologies, and biomimetics. We invited seven keynote speakers who dealt with related state-of-the-art technologies including unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs), flapping wings (FWs), unmanned ground vehicles (UGVs), underwater vehicles (UVs), bio-inspired robotics, advanced control, and intelligent systems, among others. This book is a collection of excellent papers that were updated after presentation at ICIUS2011. All papers that form the chapters of this book were reviewed and revised from the perspective of advanced relevant technologies in the field. The aim of this book is to stimulate interactions among researchers active in the areas pertinent to intelligent unmanned systems.
Classical Feedback Control with Nonlinear Multi-Loop Systems describes the design of high-performance feedback control systems, emphasizing the frequency-domain approach widely used in practical engineering. It presents design methods for high-order nonlinear single- and multi-loop controllers with efficient analog and digital implementations. Bode integrals are employed to estimate the available system performance and to determine the ideal frequency responses that maximize the disturbance rejection and feedback bandwidth. Nonlinear dynamic compensators provide global stability and improve transient responses. This book serves as a unique text for an advanced course in control system engineering, and as a valuable reference for practicing engineers competing in today's industrial environment.
This book, edited by the European Space Policy Institute, is the first international publication, following UNISPACE+50, to analyze how space capacity building can empower the international community towards fully accessing all the economic and societal benefits that space assets and data can offer. New innovation models are increasingly spreading across various sectors and disciplines, including space, which is becoming an integral part of many societal activities (e.g. telecoms, weather, climate change and environmental monitoring, civil protection, infrastructures, transportation and navigation, healthcare and education). The book helps readers construct their own space capacity building roadmaps, which take into account key stakeholders and also new private actors, NGOs and civil society. Starting from a policy and strategy perspective, it addresses key aspects of capacity building, including innovation and exploration, global health, climate change and resilient societies. It outlines the available options and summarizes the ideal programmatic conditions for their successful implementation. Showcasing reflections from a range of senior space professionals around the world, with their unique perspectives and solutions, it provides a rich mosaic in which various cultural and policy approaches to space are translated into actionable programs and ideas so that space may truly benefit all of humankind.
This book presents a collection of chapters, which address various contexts and challenges of the idea of human enhancement for the purposes of human space missions. The authors discuss pros and cons of mostly biological enhancement of human astronauts operating in hostile space environments, but also ethical and theological aspects are addressed. In contrast to the idea and program of human enhancement on Earth, human enhancement in space is considered a serious and necessary option. This book aims at scholars in the following fields: ethics and philosophy, space policy, public policy, as well as biologists and psychologists.
This book presents an isospectral approach for several important mechanical vibrating systems. Discrete and continuous isospectral systems are discussed using a simple multi-degree of freedom spring-mass system followed by illustration of isospectral beams and their solution through evolutionary computing. Next, it addresses axially loaded Euler-Bernoulli beams and aims to find isospectral counterparts of these systems. The practical application of these isospectral systems for vibration testing and for finding new closed form solutions is discussed. A considerable part of the book is devoted to isospectral rotating beams and their non-rotating analogs including Rayleigh beams. Aimed at researchers and graduate students in mechanical; aerospace; civil; automotive; ocean engineering especially mechanical vibrations, this monograph: Discusses isospectral vibrating systems to aid vibration testing and computational analysis Explores isospectral analogs between rotating and non-rotating structures Provides simpler isospectral beams for vibration testing and for 3D printing Uses firefly optimization method and electromagnetism inspired optimization method to find isospectral systems Shows the use of isospectral systems to find new closed form solutions using an indirect approach
Wireless sensor Networks: Vehicle and Space Applications describes the practical perspectives in using wireless sensor networks (WSN) to develop real world applications that can be used for space exploration. These applications include sensor interfaces, remote wireless vehicles, space crew health monitoring and instrumentation. The material discusses how applications of WSN originally developed for space travel and exploration are being applied and used in multiple real world applications, allowing for the development of smart systems that have characteristics such as self healing, self diagnosis, and emergency healthcare notification.
For over 80 years, the National Society of Professional Engineers (NSPE) has been a leader in the promotion of ethical practice within the field of engineering. One of the Society's greatest contributions is the formation and adoption of the NSPE Code of Ethics. But the code, with its six "Fundamental Canons," is only truly instructive if engineers can bridge the gap between principles and action. Here there is no substitute for personal reflection on the ethical and philosophical issues that underlie the code. If done well, such reflection provides an indispensable basis for moral problem solving. Beyond the Code: A Philosophical Guide to Engineering Ethics is designed to complement the NSPE Code of Ethics by helping readers "go beyond" in their understanding of the philosophical issues bound up in the code. Each chapter addresses one of the Fundamental Canons of the NSPE code, and provides a philosophical analysis of the various parts of each canon by employing contemporary and classical texts. This unique approach to engineering ethics guides students and professionals in their readings of the appended selections to refine their understanding of the code in order to apply it to the practical challenges of today's engineers. Key Features: Is the first introduction to engineering ethics that helps students understand and apply the NSPE Code of Ethics to engineering practice Includes a Preface from Arthur E. Schwartz, NSPE Deputy Executive Director and General Counsel, and NAFE Executive Director As a hybrid text, includes primary philosophical texts with extensive introductions and guided reading questions from the book's three authors Offers case studies from the NSPE Board of Ethical Review, allowing students to see a direct connection between the issues discussed in the text and real-world engineering practice Includes the following pedagogical aids: "Key Terms and Concepts" for each chapter "Preparing to Read" sections before each primary source reading "Guided Reading Questions" after each primary source reading "Going Beyond-Our Questions for a Deep Dive" after each case study.
Have you ever wondered how NASA designs, builds, and tests spacecrafts and hardware for space? How is it that wildly successful programs such as the Mars Exploration Rovers could produce a rover that lasted over ten times the expected prime mission duration? Or build a spacecraft designed to visit two orbiting destinations and last over 10 years when the fuel ran out? This book was written by NASA/JPL engineers with experience across multiple projects, including the Mars rovers, Mars helicopter, and Dawn ion propulsion spacecraft in addition to many more missions and technology demonstration programs. It provides useful and practical approaches to solving the most complex thermal-structural problems ever attempted for design spacecraft to survive the severe cold of deep space, as well as the unforgiving temperature swings on the surface of Mars. This is done without losing sight of the fundamental and classical theories of thermodynamics and structural mechanics that paved the way to more pragmatic and applied methods such finite element analysis and Monte Carlo ray tracing, for example. Features: Includes case studies from NASA's Jet Propulsion Laboratory, which prides itself in robotic exploration of the solar system, as well as flyting the first cubeSAT to Mars. Enables spacecraft designer engineers to create a design that is structurally and thermally sound, and reliable, in the quickest time afforded. Examines innovative low-cost thermal and power systems. Explains how to design to survive rocket launch, the surfaces of Mars and Venus. Suitable for practicing professionals as well as upper-level students in the areas of aerospace, mechanical, thermal, electrical, and systems engineering, Thermal and Structural Electronic Packaging Analysis for Space and Extreme Environments provides cutting-edge information on how to design, and analyze, and test in the fast-paced and low-cost small satellite environment and learn techniques to reduce the design and test cycles without compromising reliability. It serves both as a reference and a training manual for designing satellites to withstand the structural and thermal challenges of extreme environments in outer space.
This book presents the first-ever comprehensive analysis of ASEAN space development programs. Written by prominent actors in the region, it goes beyond a mere expose of the history, current status and future plans of ASEAN space technology development and utilization programs, by analyzing the conditions in which a space program can be initiated in the region. It does so in two ways: on the one hand, it questions the relevance of and motivations behind the inception of space development programs in developing countries, and on the other hand, it focuses on the very specific context of ASEAN (a highly disaster-prone area shaped by unique political alliances with a distinctive geopolitical ecosystem and enormous economic potential, etc.). Last but not least, after having analyzed established and emerging space programs in the region, it provides concrete recommendations for any regional or extra-regional developing nation eager to gain a foothold in space. As such, this book offers a valuable resource for researchers and engineers in the field of space technology, as well as for space agencies and government policymakers.
The conventional approach to through-life-support for aircraft structures can be divided into the following phases: (i) detection of defects, (ii) diagnosis of their nature and significance, (iii) forecasting future behaviour-prognosis, and (iv) pre scription and implementation of remedial measures including repairs. Considerable scientific effort has been devoted to developing the science and technology base for the first three phases. Of particular note is the development of fracture mechanics as a major analytical tool for metals, for predicting residual strength in the presence of cracks ( damage tolerance) and rate of crack propagation under service loading. Intensive effort is currently being devoted to developing similar approaches for fibre composite structures, particularly to assess damage tolerance and durability in the presence of delamination damage. Until recently there has been no major attempt to develop a science and tech nology base for the last phase, particularly with respect to the development of repairs. Approaches are required which will allow assessment of the type and magnitude of defects amenable to repair and the influence of the repair on the stress intensity factor (or some related parameter). Approaches are also required for the development and design of optimum repairs and for assessment of their durability."
The book reports on the latest theoretical and experimental findings in the field of active flow and combustion control, in the context of energy conversion for power and propulsion systems. It covers new developments in actuator technology and sensing, robust and optimal open- and closed-loop control, model reduction for control purposes, and unsteady turbine cooling and performance, among other relevant topics. Gathering contributions to the Active Flow and Combustion Control (AFCC 2021), held virtually on September 28-29, 2021, from the Technische Universitat Berlin, Germany, this book describes research that has been carried out within, and supported by, the collaborative research center SFB 1029 on "Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics", and funded by the German Research Foundation (DFG). It highlights theoretical and practical aspects, and corresponding solutions, that are important for the development of future energy conversion systems, thus offering a timely guide for researchers and practitioners in the field of aeronautics, turbomachinery, control and combustion.
As the sister book to "Introduction to Multicopter Design and Control," published by Springer in 2017, this book focuses on using a practical process to help readers to deepen their understanding of multicopter design and control. Novel tools with tutorials on multicopters are presented, which can help readers move from theory to practice. Experiments presented in this book employ: (1) The most widely-used flight platform - multicopters - as a flight platform; (2) The most widely-used flight pilot hardware - Pixhawk - as a control platform; and (3) One of the most widely-used programming languages in the field of control engi-neering - MATLAB + Simulink - as a programming language. Based on the current advanced development concept Model-Based Design (MBD)process, the three aspects mentioned above are closely linked. Each experiment is implemented in MATLAB and Simulink, and the numerical simula-tion test is carried out on a built simulation platform. Readers can upload the controller to the Pixhawk autopilot using automatic code generation technology and form a closed loop with a given real-time simulator for Hardware-In-the-Loop (HIL) testing. After that, the actual flight with the Pixhawk autopilot can be performed. This is by far the most complete and clear guide to modern drone fundamentals I've seen.It covers every element of these advanced aerial robots and walks through examples and tutorials based on the industry's leading open-source software and tools. Read this book, and you'll be well prepared to work at the leading edge of this exciting new industry. Chris Anderson, CEO 3DR and Chairman, the Linux Foundation's Dronecode Project The development of a multicopter and its applications is very challenging in the robotics area due to the multidomain knowledge involved. This book systematically addresses the design, simulation and implementation of multicopters with the industrial leading workflow - Model-Based Design, commonly used in the automotive and aero-defense industries. With this book, researchers and engineers can seamlessly apply the concepts, workflows, and tools in other engineering areas, especially robot design and robotics ap-plication development. Dr. Yanliang Zhang, Founder of Weston Robot, EX-product Manager of Robotics System Toolbox at the MathWorks
Coanda effect is a complex fluid flow phenomenon enabling the production of vertical take-off/landing aircraft. Other applications range from helicopters to road vehicles, from flow mixing to combustion, from noise reduction to pollution control, from power generation to robot operation, and so forth. Book starts with description of the effect, its history and general formulation of governing equations/simplifications used in different applications. Further, it gives an account of this effect's lift boosting potential on a wing and in non-flying vehicles including industrial applications. Finally, occurrence of the same in human body and associated adverse medical conditions are explained. |
You may like...
The Thuringia Codex - The Sacred Science…
Jose Miguel Baez
Hardcover
Media Ethics in South African Context…
Lucas M. Oosthuizen
Paperback
(1)
|