![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology > General
Space Micropropulsion for Nanosatellites: Progress, Challenges and Future features the latest developments and progress, the challenges faced by different researchers, and insights on future micropropulsion systems. Nanosatellites, in particular cubesats, are an effective test bed for new technologies in outer space. However, most of the nanosatellites have no propulsion system, which subsequently limits their maneuverability in space.
Compiles the latest techniques for those who design advanced systems for tracking, surveillance and navigation. This second volume expands upon the first with 11 new chapters. The text includes pertinent contributions from leading international experts in this field.
Complex System Reliability presents a state-of-the-art treatment of complex multi-channel system reliability assessment and provides the requisite tools, techniques and algorithms required for designing, evaluating and optimizing ultra-reliable redundant systems. Critical topics that make Complex System Reliability a unique and definitive resource include: * redundant system analysis for k-out-of-n systems (including complex systems with embedded k-out-of-n structures) involving both perfect and imperfect fault coverage; * imperfect fault coverage analysis techniques, including algorithms for assessing the reliability of redundant systems in which each element is subject to a given coverage value (element level coverage) or in which the system uses voting to avoid the effects of a failed element (fault level coverage); and * state-of-the-art binary decision diagram analysis techniques, including the latest and most efficient algorithms for the reliability assessment of large, complex redundant systems. This practical presentation includes numerous fully worked examples that provide detailed explanations of both the underlying design principles and the techniques (such as combinatorial, recursive and binary decision diagram algorithms) used to obtain quantitative results. Many of the worked examples are based on the design of modern digital fly-by-wire control system technology. Complex System Reliability provides in-depth coverage of systems subject to either perfect or imperfect fault coverage and also the most recent techniques for correctly assessing the reliability of redundant systems that use mid-value-select voting as their primary means of redundancy management. It is a valuable resource for those involved in the design and reliability assessment of highly reliable systems, particularly in the aerospace and automotive sectors.
Discusses the concepts of mechanical, thermal, and thermodynamic equilibrium and their applications. Covers the molecular basis for internal energy, entropy, thermodynamic equilibrium, and reversibility. Enables the reader to model irreversibility and determine the net loss in performance of a thermal system compared to an idealized system and approach an ideal one. Demonstrates entropy as a path independent property by use of reversible heat engines and reversible heat pumps interacting with a process between two states, the environment and the reservoir. Covers the role of reversibility from a thermodynamics standpoint and relates it to other areas, such as gas dynamics, combustion, propulsion, power plant engineering, and engines.
This book tells the story of the evolution of the Satellite Center which started from a small Satellite Systems Division in 1967 with a handful of engineers to a vibrant R&D center which is playing the lead role in the Indian Satellite Program. India's space program is unique as it is driven by societal applications. The Indian Space Research Organisation (ISRO) has centers dedicated to various space applications. The ISRO Satellite Centre, now known as the UR Rao Satellite Centre (URSC), has evolved as lead center for Satellite Technology over five decades and has developed state-of-the-art satellites for applications such as remote sensing, satellite communication and space science. Through the story of URSC, the book describes the challenges of putting together new research and development centers and programs and conveys the importance of leadership and project management skills required to undertake such a task. This book is of interest to researchers, professionals, and administrators involved in the development of new R&D facilities and also to space scientists and space enthusiasts across the world.
This book reports on the state of the art in the field of aerial-aquatic locomotion, focusing on the main challenges concerning the translation of this important ability from nature to synthetic systems, and describing innovative engineering solutions that have been applied in practice by the authors at the Aerial Robotics Lab of Imperial College London. After a general introduction to aerial-aquatic locomotion in nature, and a summary of the most important engineering achievements, the book introduces readers to important physical and mathematical aspects of the multimodal locomotion problem. Besides the basic physics involved in aerial-aquatic locomotion, the role of different phenomena happening in fluids, or those due to structural mechanics effects or to power provision, are presented in depth, across a large dimension range, from millimeters to hundreds of meters. In turn, a practice-oriented discussion on the obstacles and opportunities of miniaturization, for both robots and animals is carried out. This is followed by applied engineering considerations, which describe relevant hardware considerations involved in propulsion, control, communication and fabrication. Different case studies are analyzed in detail, reporting on the latest research carried out by the authors, and covering topics such as propulsive aquatic escape, the challenging mechanics of water impact, and a hybrid sailing and flying aircraft. Offering extensive and timely information on the design, construction and operation of small-scale robots, and on multimodal locomotion, this book provides researchers, students and professionals with a comprehensive and timely reference guide to the topic of aerial-aquatic locomotion, and the relevant bioinspired approaches. It is also expected to inspire future research and foster a stronger multidisciplinary discussion in the field.
Nondestructive Evaluation (NDE) becomes a key discipline for modem technology. Information about materials defects and properties is significant to guarantee reliability of a product and avoid fatal accidents. For instance technologies with high safety requirements like aviation, automotive, and energy production are driving forces for NDE. Keeping in mind that aging of the infrastructure is an issue in all industrial countries and that, for example, an aircraft can have a lifetime of several decades poses new challenges for NDE and especially nondestructive materials characterization. Besides the traditional in field applications, NDE becomes more and more a tool to study materials degradation processes and to provide engineers with input data for sophisticated models describing materials behavior and the life of components. At present, this marriage of NDE and materials modeling shows significant success in predicting damage progression (corrosion, fatigue) and thus an enhancement of availability and reliability of components and complete aircraft. This book will give a snapshot of the present research in materials characterization of aging aircraft. Methods considered are x-ray, ultrasonic, optical and thermal techniques and in particular techniques with high spatial resolution to detect and quantify early stages of degradation or to characterize materials microstructure. Every chapter briefly describes the basics and the principles of one NDE method under consideration. Discussing recent research results by applying these methods completes the chapters. The readers will get an overview of the present state of the art of materials characterization techniques."
High-contrast astronomical imaging has progressed significantly in
the past decade. Many of these techniques have been laboratory
demonstrated to perform at contrast levels adequate for the
detection of Solar System-like planets and dust around nearby
stars. None of them, however, have been demonstrated in space. The
state of the art in high-contrast imaging systems that have been
built for space-based observation, the environment best suited for
spectroscopic study of exo-Earths, is the nulling interferometer
that was flown on the Planetary Imaging Concept Testbed Using a
Rocket Experiment (PICTURE). The PICTURE nulling interferometer,
built from multiple optical elements, relies on the incorporation
of additional dispersive components in order to deliver the
broadband performance preferred for faint object imaging. These
elements add to the cost, complexity, and misalignment risk of the
instrument.
The book collects selected papers presented at the 5th International Conference on Aerospace System Science and Engineering (ICASSE 2021), organized by Shanghai Jiao Tong University, China, hosted by Moscow Aviation Institute, Russia. It provides a forum for experts in aeronautics and astronautics to share new ideas and findings. ICASSE conference has been organized annually since 2017 and host in Shanghai, Moscow, and Toronto in turn, where the three regional editors of journal Aerospace Systems are located. This book presents high-quality contributions in the subject area of Aerospace System Science and Engineering, including topics such as: Trans-space vehicle systems design and integration, Air vehicle systems, Space vehicle systems, Near-space vehicle systems, Opto-electronic system, Aerospace robotics and unmanned system, Aerospace robotics and unmanned system, Communication, navigation and surveillance, Dynamics and control, Intelligent sensing and Information fusion, Aerodynamics and aircraft design, Aerospace propulsion, Avionics system, Air traffic management, Earth observation, Deep space exploration, Bionic micro-aircraft/spacecraft.
This book focuses on the highly complex and intertwined relationship between civil aviation, technological globalization and Cold War politics. It explores how the advancement of Soviet civil aircraft engineering during the 1950s technically triggered the globalization of the Cold War. The study also shows how the processes of technological standardization facilitated transfers of technology and knowledge across the Iron Curtain and how East-West as well as East-South connections evolved. It uncovers the motives and reasons for this transfer of knowledge and expertise, and aims to identify the specific roles played by states, international organizations and interpersonal networks. By taking a global approach to this history, the book advances ongoing debates in the field. It reassesses Europe's role in the Cold War, pointing out the substantial differences in how Western Europe and the United States viewed the Communist world. This book will be of interest to scholars of international history, the history of technology and Cold War history.
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world's first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.
These proceedings present selected research papers from CSNC 2018, held during 23rd-25th May in Harbin, China. The theme of CSNC 2018 is Location, Time of Augmentation. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC 2018, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
This book collects selected papers from the 7th Conference on Signal and Information Processing, Networking and Computers held in Rizhao, China, on September 21-23, 2020. The 7th International Conference on Signal and Information Processing, Networking and Computers (ICSINC) was held in Rizhao, China, on September 21-23, 2020.
This book provides the first comprehensive comparison of the Aircraft Maintenance Program (AMP) requirements of the two most widely known aviation regulators: the European Aviation Safety Agency (EASA) and the Federal Aviation Administration (FAA). It offers an in-depth examination of the elements of an AMP, explaining the aircraft accident investigations and events that have originated and modelled the current rules. By introducing the Triangle of Airworthiness model (Reliability, Quality and Safety), the book enables easier understanding of the processes by which an aircraft and its components are deemed to be in a safe condition for operation from a cost-effective and optimization perspective. The book compares the best practices used by top airlines and compiles a series of tools and techniques to improve the standards of the AMP. Aircraft maintenance engineers, students in the field of aerospace engineering, and airlines staff, as well as researchers more widely interested in safety, quality, and reliability will benefit from reading this book
The book focuses on the topic of trends and challenges with regards to satellite-based earth observation. Contributors include legal experts in the field and representatives from institutions such as the European Space Agency, the European Space Policy Institute, academia and the private sector.
The design, implementation and validation of avionics and aeronautical systems have become extremely complex tasks due to the increase of functionalities that are deployed in current avionics systems and the need to be able certify them before putting them into production. This book proposes a methodology to enable the rapid prototyping of such a system by considering from the start the certification aspects of the solution produced. This method takes advantage of the model-based design approaches as well as the use of formal methods for the validation of these systems. Furthermore, the use of automatic software code generation tools using models makes it possible to reduce the development phase as well as the final solution testing. This book presents, firstly, an overview of the model-based design approaches such as those used in the field of aeronautical software engineering. Secondly, an original methodology that is perfectly adapted to the field of aeronautical embedded systems is introduced. Finally, the authors illustrate the use of this method using a case study for the design, implementation and testing of a new generation aeronautical router.
This open access book serves as textbook on the physics of the radiation belts surrounding the Earth. Discovered in 1958 the famous Van Allen Radiation belts were among the first scientific discoveries of the Space Age. Throughout the following decades the belts have been under intensive investigation motivated by the risks of radiation hazards they expose to electronics and humans on spacecraft in the Earth's inner magnetosphere. This textbook teaches the field from basic theory of particles and plasmas to observations which culminated in the highly successful Van Allen Probes Mission of NASA in 2012-2019. Using numerous data examples the authors explain the relevant concepts and theoretical background of the extremely complex radiation belt region, with the emphasis on giving a comprehensive and coherent understanding of physical processes affecting the dynamics of the belts. The target audience are doctoral students and young researchers who wish to learn about the physical processes underlying the acceleration, transport and loss of the radiation belt particles in the perspective of the state-of-the-art observations.
In this book, space systems are situated in the global processes of the 21st century 's information society and the role that space information systems could play in risk management is determined; methods of detecting and forecasting of both natural disasters and technogenic catastrophes and existing global and regional monitoring systems are described; and the IGMASS is introduced with its architecture and design concept and social and economic aspects and estimates of its creation, development, and utilization. Finally, results of the international symposium held in Limassol, Cyprus, in November 2009 in preparation of the IGMASS project 's submission to the United Nations are discussed.
Aviation Fuels provides up-to-date data on fuel effects on combustion performance and use of alternative fuels in aircraft. This book covers the latest advances on aviation fuel technologies, including alternative fuels, feedstocks and manufacturing processes, combustion performance, chemical modeling, fuel systems compatibility and the technical and environmental challenges for implementing the use of alternative fuels for aviation. Aviation fuel and combustion researchers, academics, and program managers for aviation technologies will value this comprehensive overview and summary on the present status of aviation fuels.
Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail.
A History Today Book of the Year A world-renowned astronomer and an esteemed science writer make the provocative argument for space exploration without astronauts. Human journeys into space fill us with wonder. But the thrill of space travel for astronauts comes at enormous expense and is fraught with peril. As our robot explorers grow more competent, governments and corporations must ask, does our desire to send astronauts to the Moon and Mars justify the cost and danger? Donald Goldsmith and Martin Rees believe that beyond low-Earth orbit, space exploration should proceed without humans. In The End of Astronauts, Goldsmith and Rees weigh the benefits and risks of human exploration across the solar system. In space humans require air, food, and water, along with protection from potentially deadly radiation and high-energy particles, at a cost of more than ten times that of robotic exploration. Meanwhile, automated explorers have demonstrated the ability to investigate planetary surfaces efficiently and effectively, operating autonomously or under direction from Earth. Although Goldsmith and Rees are alert to the limits of artificial intelligence, they know that our robots steadily improve, while our bodies do not. Today a robot cannot equal a geologist's expertise, but by the time we land a geologist on Mars, this advantage will diminish significantly. Decades of research and experience, together with interviews with scientific authorities and former astronauts, offer convincing arguments that robots represent the future of space exploration. The End of Astronauts also examines how spacefaring AI might be regulated as corporations race to privatize the stars. We may eventually decide that humans belong in space despite the dangers and expense, but their paths will follow routes set by robots.
During the last decade, rapid advances have been made in the area of flow analysis in the components of gas turbine engines. Improving the design methods of turbomachine blade rows and under standing of the flow phenomena through them, has become one of the major research topics for aE'rodynamists. This increase of research efforts is due to the need of reducing the weight and fuel consumption of turbojet engines for the same thrust levels. One way of achieving this is to design more efficient components working at high local velocities. Design efforts can lead to desired results only if the details of flow through the blade rows are understood. It is also known that for aircraft propulsion systems development, time and cost can be reduced significantly if the perf ormance can be predicted with conf idence and enough precision. This. generally iK: eds sophisticated two or three dimensional computer codes that can give enough information for design and performance prediction. In the recent years, designers also started to use these sophisticated codes more and more with confidence, in connection with computer aided design and manufacturing techniques. On the other hand, the modelling and solution of flow and the meast"
MECHANICS OF AIRCRAFT STRUCTURES Explore the most up-to-date overview of the foundations of aircraft structures combined with a review of new aircraft materials The newly revised Third Edition of Mechanics of Aircraft Structures delivers a combination of the fundamentals of aircraft structure with an overview of new materials in the industry and a collection of rigorous analysis tools into a single one-stop resource. Perfect for a one-semester introductory course in structural mechanics and aerospace engineering, the distinguished authors have created a textbook that is also ideal for mechanical or aerospace engineers who wish to stay updated on recent advances in the industry. The new edition contains new problems and worked examples in each chapter and improves student accessibility. A new chapter on aircraft loads and new material on elasticity and structural idealization form part of the expanded content in the book. Readers will also benefit from the inclusion of: A thorough introduction to the characteristics of aircraft structures and materials, including the different types of aircraft structures and their basic structural elements An exploration of load on aircraft structures, including loads on wing, fuselage, landing gear, and stabilizer structures An examination of the concept of elasticity, including the concepts of displacement, strain, and stress, and the equations of equilibrium in a nonuniform stress field A treatment of the concept of torsion Perfect for senior undergraduate and graduate students in aerospace engineering, Mechanics of Aircraft Structures will also earn a place in the libraries of aerospace engineers seeking a one-stop reference to solidify their understanding of the fundamentals of aircraft structures and discover an overview of new materials in the field. |
![]() ![]() You may like...
Orbital Mechanics and Formation Flying…
Pedro A. Capo-Lugo, P.M. Bainum
Hardcover
R4,503
Discovery Miles 45 030
Compressibility, Turbulence and High…
Thomas B. Gatski, Jean-Paul Bonnet
Hardcover
R2,339
Discovery Miles 23 390
Design of Control Laws and State…
Arturo Tadeo Espinoza-Fraire, Alejandro Enrique Dzul Lopez, …
Paperback
R4,069
Discovery Miles 40 690
Photovoltaics for Space - Key Issues…
Sheila Bailey, Aloysius F Hepp, …
Paperback
R5,095
Discovery Miles 50 950
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
Nonlinear Kalman Filter for Multi-Sensor…
Jean-Philippe Condomines
Hardcover
R2,664
Discovery Miles 26 640
Fault-Tolerant Attitude Control of…
Qinglei Hu, Bing Xiao, …
Paperback
R3,608
Discovery Miles 36 080
|