![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Aerospace & aviation technology > General
This book systematically presents the concept, history, implementation, theory system and basic methods of pulsar and space flight, illustrating the characteristics of pulsars. It also describes the classification of spacecraft navigation systems and the autonomous navigation technologies, as well as X-ray pulsar-based navigation systems (XPNAV) and discusses future navigation satellite systems in detail.
This book introduces readers to the fundamentals of estimation and dynamical system theory, and their applications in the field of multi-source information fused autonomous navigation for spacecraft. The content is divided into two parts: theory and application. The theory part (Part I) covers the mathematical background of navigation algorithm design, including parameter and state estimate methods, linear fusion, centralized and distributed fusion, observability analysis, Monte Carlo technology, and linear covariance analysis. In turn, the application part (Part II) focuses on autonomous navigation algorithm design for different phases of deep space missions, which involves multiple sensors, such as inertial measurement units, optical image sensors, and pulsar detectors. By concentrating on the relationships between estimation theory and autonomous navigation systems for spacecraft, the book bridges the gap between theory and practice. A wealth of helpful formulas and various types of estimators are also included to help readers grasp basic estimation concepts and offer them a ready-reference guide.    Â
This book provides novel concepts and techniques for air traffic management (ATM) and communications, navigation, and surveillance (CNS) systems. The book consists of selected papers from the 6th ENRI International Workshop on ATM/CNS (EIWAC2019) held in Tokyo in October 2019, the theme of which was "Exploring Ideas for World Aviation Challenges". Included are key topics to realize safer and more efficient skies in the future, linked to the integrated conference theme consisting of long-term visions based on presentations from various fields. The book is dedicated not only to researchers, academicians, and university students, but also to engineers in the industry, air navigation service providers (ANSPs), and regulators of aviation.
Drones in Smart-Cities: Security and Performance is the first book dedicated to drones in smart cities, helping address the many research challenges in bringing UAVs into practice. The book incorporates insights from the latest research in Internet of Things, big data, and cloud computing, 5G, and other communication technologies. It examines the design and implementation of UAV, focusing on data delivery, performability, and security. Intended for researchers, engineers, and practitioners, Drones in Smart-Cities: Security and Performance combines the technical aspects with academic theory to help implement the smart city vision around the globe.
This book highlights new methods and parametric algorithms for the digital coherent processing of signals in airborne radar systems located on air vehicles. Using the autoregressive (AR) model, it delivers more accurate danger assessments for flight in wind shear and atmospheric turbulence, while also suggesting how they could be implemented. Given its scope, the book is intended for technical experts whose work involves the development, production and operation of airborne radio-electronic systems.
This book covers the author's research achievements and the latest advances in high-speed pneumatic control theory and applied technologies. It presents the basic theory and highlights pioneering technologies resulting from research and development efforts in aerospace, aviation and other major equipment, including: pneumatic servo control theory, pneumatic nonlinear mechanisms, aerothermodynamics, pneumatic servo mechanisms, and high-speed pneumatic control theory.
This book provides insight into research and development of key aerospace materials that have enabled some of the most exciting air and space technologies in recent years. The stories are shared with you by the women who experienced them, those engineers and scientists in the labs, on the shop floors, or on the design teams contributing to the realization of these technologies. Their work contributes to the world in the challenging and vital field of aerospace materials, and their stories seethe with a pride and a passion for the opportunity to make these important contributions. As an important part of the Women in Science and Engineering book series, the work highlights the contribution of women leaders in Aerospace Materials, inspiring women and men, girls and boys to enter and apply themselves to secure our future in an increasingly connected world.
This volume contains the proceedings of the CEAS/DragNet European Drag Reduction Conference 2000. The conference addressed the recent advances in all areas of drag reduction research, development, validation and demonstration including laminar flow technology, adaptive wing concepts, turbulent and induced drag reduction, separation control and supersonic flow aspects. This volume is of particular interest to engineers, scientists and students working in the aeronautics industry, research establishments or academia.
This book offers a survey of the state of the art in the field of motion sickness. It begins by describing the historical background and the current definition of motion sickness, then discusses the prevalence among individuals, along with the physiological and psychological concomitants of the disorder. It reviews the incidence of motion sickness in numerous provocative motion environments and discusses various personal factors that appear to influence this aspect. Various characteristics of provocative motion stimuli are also described, together with the results of studies conducted in the laboratory, on motion simulators and at sea. Laboratory tests that could potentially be used to assess an individual's susceptibility to motion sickness and his or her ability to adapt to motion environments are presented in detail, together with the ways in which individuals might be trained to prevent motion sickness or more effectively cope with motion environments. In closing, the book reports on the cognitive-behavioral approach developed by the author (Dobie, 1963) as well as the various desensitization programs employed in military settings, and discusses the relative effectiveness of these methods in comparison to cognitive-behavioral counseling.
In an expanding world with limited resources, optimization and uncertainty quantification have become a necessity when handling complex systems and processes. This book provides the foundational material necessary for those who wish to embark on advanced research at the limits of computability, collecting together lecture material from leading experts across the topics of optimization, uncertainty quantification and aerospace engineering. The aerospace sector in particular has stringent performance requirements on highly complex systems, for which solutions are expected to be optimal and reliable at the same time. The text covers a wide range of techniques and methods, from polynomial chaos expansions for uncertainty quantification to Bayesian and Imprecise Probability theories, and from Markov chains to surrogate models based on Gaussian processes. The book will serve as a valuable tool for practitioners, researchers and PhD students.
Spacecraft Collision Avoidance Technology presents the theory and practice of space collision avoidance. The title gives models of time and space environment, their impact on high-precision orbit prediction, considers optimal orbit determination methods and models in different warning stages, and establishes basic models for warning and avoidance. Chapters present an outline of spacecraft collision warning strategy, elaborate on the basics of orbital calculation for collision avoidance, consider space object detection technology, detail space environment and object orbit, give a method for spacecraft collision warning orbit calculation, and finally, demonstrate a strategy for spacecraft collision warning and avoidance.
This textbook is a multi-disciplinary compendium that includes several aspects of rotorcraft technology. It introduces the reader to the aerodynamic aspects of rotary wings and presents experimental techniques for aerodynamics. The chapters also cover rotorcraft engines and rotorcraft steady-state flight performance and stability. It explores several aspects of the tiltrotor configuration and lists challenges in their design, modelling and simulation. The reader will also find an introductory overview of flight control systems for rotorcraft, as well as the conceptual and preliminary design concepts for a conventional helicopter. This textbook contains video recordings of computer simulations that can be used alongside the main text.
This book addresses anti-fatigue manufacturing, analysis and test verification technologies for typical aircraft structures, including fastening holes, shot peening plates, different types of joints and wing boxes. Offering concrete solutions to practical problems in aircraft engineering, it will benefit researchers and engineers in the fields of Aerospace Technology and Astronautics.
This proceedings provides novel concepts and techniques for air traffic management (ATM) and communications, navigation, and surveillance (CNS) systems. The volume consists of selected papers from the 5th ENRI International Workshop on ATM/CNS (EIWAC2017) held in Tokyo in November 2017, the theme of which was "Drafting Future Skies". Included are key topics to realize safer and more efficient skies in the future, linked to the integrated conference theme consisting of long-term visions based on presentations from various fields. The proceedings is dedicated not only to researchers, academicians, and university students, but also to engineers in the industry, air navigation service providers (ANSPs), and regulators of aviation.
The Principles of Integrated Technology in Avionics Systems describes how integration can improve flight operations, enhance system processing efficiency and equip resource integration. The title provides systematic coverage of avionics system architecture and ground system integration. Looking beyond hardware resource sharing alone, it guides the reader through the benefits and scope of a modern integrated avionics system. Integrated technology enhances the performance of organizations by improving system capacity and boosting efficiency. Avionics systems are the functional center of aircraft systems. System integration technology plays a vital role in the complex world of avionics and an integrated avionics system will fully-address systems, information and processes.
This book highlights the synthesis of polarization selection system in the background of passive noise formed by reflections from space-distributed targets. This synthesis is fulfilled as close as possible to its ideal configuration in terms of maximal signal-to-noise ratio for the matched load of radar station antenna system. It presents a new approach to radar system resolution enhancement based on the development of mathematical model for radiometric receivers with mono-pulse antenna systems, as well as creation of a new algorithm that allows increasing angular resolution during the object's search and tracking due to special signal processing.
This book presents high-quality contributions in the subject area of Aerospace System Science and Engineering, including topics such as: Trans-space vehicle systems design and integration, Air vehicle systems, Space vehicle systems, Near-space vehicle systems, Opto-electronic system, Aerospace robotics and unmanned system, Aerospace robotics and unmanned system, Communication, navigation, and surveillance, Dynamics and control, Intelligent sensing and information fusion, Aerodynamics and aircraft design, Aerospace propulsion, Avionics system, Air traffic management, Earth observation, Deep space exploration, and Bionic micro-aircraft/spacecraft. The book collects selected papers presented at the 4th International Conference on Aerospace System Science and Engineering (ICASSE 2020), organized by Shanghai Jiao Tong University, China, held on 14-16 July 2020 as virtual event due to COVID-19. It provides a forum for experts in aeronautics and astronautics to share new ideas and findings. ICASSE conferences have been organized annually since 2017 and hosted in Shanghai, Moscow, and Toronto in turn, where the three regional editors of the journal Aerospace Systems are located.
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.
This book provides in-depth explanations of design theories and methods for remote sensing satellites, as well as their practical applications. There have been significant advances in spacecraft remote sensing technologies over the past decade. As the latest edition of the book "Space Science and Technology Research," it draws on the authors' vast engineering experience in system design for remote sensing satellites and offers a valuable guide for all researchers, engineers and students who are interested in this area. Chiefly focusing on mission requirements analyses and system design, it also highlights a range of system design methods.
This book proposes some novel approaches for finding unmanned aerial vehicle trajectories to reach targets with unknown location in minimum time. At first, it reviews probabilistic search algorithms that have been used for dealing with the minimum time search (MTS) problem, and discusses how metaheuristics, and in particular the ant colony optimization algorithm (ACO), can help to find high-quality solutions with low computational time. Then, it describes two ACO-based approaches to solve the discrete MTS problem and the continuous MTS problem, respectively. In turn, it reports on the evaluation of the ACO-based discrete and continuous approaches to the MTS problem in different simulated scenarios, showing that the methods outperform in most all the cases over other state-of-the-art approaches. In the last part of the thesis, the work of integration of the proposed techniques in the ground control station developed by Airbus to control ATLANTE UAV is reported in detail, providing practical insights into the implementation of these methods for real UAVs.
In the last decade, there has been an influx in the development of new technologies for deep space exploration. Countries all around the world are investing in resources to create advanced energetic materials and propulsion systems for their aerospace initiatives. Energetic Materials Research, Applications, and New Technologies is an essential reference source of the latest research in aerospace engineering and its application in space exploration. Featuring comprehensive coverage across a range of related topics, such as molecular dynamics, rocket engine models, propellants and explosives, and quantum chemistry calculations, this book is an ideal reference source for academicians, researchers, advanced-level students, and technology developers seeking innovative research in aerospace engineering.
This book consolidates decades of knowledge on space flight navigation theory, which has thus far been spread across various research articles. By gathering this research into a single text, it will be more accessible to students curious about the study of space flight navigation. Books on optimal control theory and orbital mechanics have not adequately explored the field of space flight navigation theory until this point. The opening chapters introduce essential concepts within optimal control theory, such as the optimization of static systems, special boundary conditions, and dynamic equality constraints. An analytical approach is focused on throughout, as opposed to computational. The result is a book that emphasizes simplicity and practicability, which makes it accessible and engaging. This holds true in later chapters that involve orbital mechanics, two-body maneuvers, bounded inputs, and flight in non-spherical gravity fields. The intended audience is primarily upper-undergraduate students, graduate students, and researchers of aerospace, mechanical, and/or electrical engineering. It will be especially valuable to those with interests in spacecraft dynamics and control. Readers should be familiar with basic dynamics and modern control theory. Additionally, a knowledge of linear algebra, variational methods, and ordinary differential equations is recommended.
Relying on unmanned autonomous flight control programs, unmanned aerial vehicles (UAVs) equipped with radio communication devices have been actively developed around the world. Given their low cost, flexible maneuvering and unmanned operation, UAVs have been widely used in both civilian operations and military missions, including environmental monitoring, emergency communications, express distribution, even military surveillance and attacks, for example. Given that a range of standards and protocols used in terrestrial wireless networks are not applicable to UAV networks, and that some practical constraints such as battery power and no-fly zone hinder the maneuverability capability of a single UAV, we need to explore advanced communication and networking theories and methods for the sake of supporting future ultra-reliable and low-latency applications. Typically, the full potential of UAV network's functionalities can be tapped with the aid of the cooperation of multiple drones relying on their ad hoc networking, in-network communications and coordinated control. Furthermore, some swarm intelligence models and algorithms conceived for dynamic negotiation, path programming, formation flight and task assignment of multiple cooperative drones are also beneficial in terms of extending UAV's functionalities and coverage, as well as of increasing their efficiency. We call the networking and cooperation of multiple drones as the terminology 'flying ad hoc network (FANET)', and there indeed are numerous new challenges to be overcome before the idespread of so-called heterogeneous FANETs. In this book, we examine a range of technical issues in FANETs, from physical-layer channel modeling to MAC-layer resource allocation, while also introducing readers to UAV aided mobile edge computing techniques.
Accelerated testing (most types of laboratory testing, proving ground testing, intensive field/flight testing, any experimental research) is increasingly a key component for predicting of product's/process performance. Trends in Development Accelerated Testing for Automotive and Aerospace Engineering provides a completely updated analysis of the current status of accelerated testing, including the basic general directions of testing (methods and equipment) development, how one needs to study real world conditions for their accurate simulation and successful accelerated testing, describes in details the role of accurate simulation in the development of automotive and aerospace engineering, shows that failures are most often found in the interconnections, step-by-step instructions and examples. This is the only book presently available that considers in detail both the positive and negative trends in testing development for prediction quality, reliability, safety, durability, maintainability, supportability, profit, and decreasing life-cycle cost, recalls, complaints and other performance components of the product. The author presents new ideas and offers a unique strategic approach to obtaining solutions which were not possible using earlier. His methodology has been widely implemented, continue to be adopted throughout the world, and leads to advance society through product improvement that can reduce loss of life, injuries, financial losses, and product recalls. It also covers new ideas in development positive and cost- effective trends in testing development, especially accelerated reliability and durability testing (ART/ADT), which includes integration accurate simulation of field/flight influences, safety, human factors, and leads to successful prediction of product performance during pre-design, design, manufacturing, and usage for the product's service life. Engineers, researchers, teachers and postgraduate/advanced students who are involved in automotive and aerospace engineering will find this a useful reference on how to apply the accelerated testing method to solve practical problems in these areas.
This textbook is designed for undergraduate students studying airspace engineering, as well as undergraduate and postgraduate students studying air transport management. It will also be very helpful for the training of air traffic control officers. The textbook does not require any prior (specialist) knowledge as it is an introduction to the Air Navigation Service Providers (ANSPs) business. There is very little literature available that gives a detailed appreciation of the complexities, potential risks and issues associated with the provision of air navigation services. The role of this textbook is to fill this significant gap with a comprehensive, in-depth study of the management principles related to Air Navigation Service Providers. This is particularly timely given recent ATC developments in Europe, USA, and New Zealand. Airlines and airports rely on the Air Navigation Service Providers (ANSPs) for the management of air traffic. Hence, Air Navigation Services (ANS) provision is considered as a core element for air transportation. This textbook addresses each of the Air Navigation Services' five broad categories of services provided to air traffic during all phases of operation: Air Traffic Management (ATM), Communication services, Navigation services and Surveillance services (CNS), Meteorological services for air navigation (MET), Aeronautical Information Services (AIS) and Search and Rescue (SAR). This textbook is designed for undergraduate students studying airspace engineering and undergraduate and postgraduate students studying air transport management. It will also be very helpful for the training of air traffic control officers. The textbook does not require any prior (specialist) knowledge as it is an introduction book to the Air Navigation Service Providers (ANSPs) business. |
You may like...
Compressibility, Turbulence and High…
Thomas B. Gatski, Jean-Paul Bonnet
Hardcover
R2,266
Discovery Miles 22 660
Aircraft Design Projects - For…
Lloyd R. Jenkinson, Jim Marchman
Paperback
R1,465
Discovery Miles 14 650
The Entomologist's Record and Journal of…
James William 1858-1911 Tutt
Hardcover
R888
Discovery Miles 8 880
Biomimicry for Aerospace - Technologies…
Vikram Shyam, Marjan Eggermont, …
Paperback
R4,444
Discovery Miles 44 440
Infrared Thermography in the Evaluation…
Carosena Meola, Simone Boccardi, …
Hardcover
R3,497
Discovery Miles 34 970
Nonlinear Kalman Filter for Multi-Sensor…
Jean-Philippe Condomines
Hardcover
R2,578
Discovery Miles 25 780
Flight Dynamics and System…
Jared A. Grauer, James E. Hubbard Jr.
Hardcover
R3,061
Discovery Miles 30 610
|