![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
The minimum temperature in the natural universe is 2.7 K. Laboratory refrigerators can reach temperatures in the microkelvin range. Modern industrial refrigerators cool foods at 200 K, whereas space mission payloads must be capable of working at temperatures as low as 20 K. Superconducting magnets used for NMR work at 4.2 K. Hence the properties of materials must be accurately known also at cryogenic temperatures. This book provides a guide for engineers, physicists, chemists, technicians who wish to approach the field of low-temperature material properties. The focus is on the thermal properties and a large spectrum of experimental cases is reported. The book presents updated tables of low-temperature data on materials and a thorough bibliography supplements any further research. Key Features include: Degrees Detailed technical description of experiments Degrees Description of the newest cryogenic apparatus Degrees Offers data on cryogenic properties of the latest new materials Degrees Current reference review
Composites are widely used in marine applications. There is considerable experience of glass reinforced resins in boats and ships but these are usually not highly loaded. However, for new areas such as offshore and ocean energy there is a need for highly loaded structures to survive harsh conditions for 20 years or more. High performance composites are therefore being proposed. This book provides an overview of the state of the art in predicting the long term durability of composite marine structures. The following points are covered: •      Modelling water diffusion •      Damage induced by water •      Accelerated testing •      Including durability in design •      In-service experience. This is essential reading for all those involved with composites in the marine industry, from initial design and calculation through to manufacture and service exploitation. It also provides information unavailable elsewhere on the mechanisms involved in degradation and how to take account of them. Ensuring long term durability is not only necessary for safety reasons, but will also determine the economic viability of future marine structures.
This book introduces anisotropic innovations in liquid crystalline polymers as well as new nanocomposite materials and testing techniques. The authors detail the newest discoveries of material properties, material types and phases, and material characterization. This interdisciplinary work creates valuable links that strengthen the approach to the evolving field of liquid crystalline polymers/ materials.
Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 7 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the seventh volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Multifunctional Materials Hybrid Materials Novel Composites Nano- and Particle-Reinforced Composites Additive Manufacturing of Composites Digital Imaging of Composites Damage Detection Non-Destructive Evaluation Fatigue and Fracture of Composites Manufacturing and Joining of Composites Advanced Composites Applications
This volume aims to stimulate discussions on research involving the use of data and digital images as an understanding approach for analysis and visualization of phenomena and experiments. The emphasis is put not only on graphically representing data as a way of increasing its visual analysis, but also on the imaging systems which contribute greatly to the comprehension of real cases. Scientific Visualization and Imaging Systems encompass multidisciplinary areas, with applications in many knowledge fields such as Engineering, Medicine, Material Science, Physics, Geology, Geographic Information Systems, among others. This book is a selection of 13 revised and extended research papers presented in the International Conference on Advanced Computational Engineering and Experimenting -ACE-X conferences 2010 (Paris), 2011 (Algarve), 2012 (Istanbul) and 2013 (Madrid). The examples were particularly chosen from materials research, medical applications, general concepts applied in simulations and image analysis and other interesting related problems.
Cementitious materials are being widely used as solidification/stabilisation and barrier materials for a variety of chemical and radioactive wastes, primarily due to their favourable retention properties for metals, radionuclides and other contaminants. The retention properties result from various mineral phases in hydrated cement that possess a high density and diversity of reactive sites for the fixation of contaminants through a variety of sorption and incorporation reactions. This book presents a state of the art review and critical evaluation of the type and magnitude of the various sorption and incorporation processes in hydrated cement systems for twenty-five elements relevant for a broad range of radioactive and industrial wastes. Effects of cement evolution or ageing on sorption/incorporation processes are explicitly evaluated and quantified. While the immobilisation of contaminants by mixing-in during hydration is not explicitly addressed, the underlying chemical processes are similar. A quantitative database on the solid/liquid distribution behaviour of radionuclides and other elements in hydrated cement systems is established on the basis of a consistent review and re-evaluation of literature data. In addition to recommended values, all underlying original experimental data and key experimental info rmation are provided, which allows users to trace the given recommendations or to develop their own set of key values. This database is closely tied to the safety analysis of near surface disposal of radioactive waste in Belgium. It focuses on radioelements, toxic stable elements and heavy metals, which makes it relevant for investigations involving the interaction of radioactive and conventional contaminants with cement-based barriers.
This book presents important concepts in metal fatigue in a straightforward manner, for the benefit of readers who must understand more advanced documents on a wide range of metal fatigue topics. The text shows how metal fatigue problems are solved in engineering practice. The book assumes no prior knowledge of metal fatigue, requiring only a basic understanding of stress analysis and mathematics covered in engineering undergraduate courses.
Nanoscience stands out for its interdisciplinarity. Barriers between disciplines disappear and the fields tend to converge at the very smallest scale, where basic principles and tools are universal. Novel properties are inherent to nanosized systems due to quantum effects and a reduction in dimensionality: nanoscience is likely to continue to revolutionize many areas of human activity, such as materials science, nanoelectronics, information processing, biotechnology and medicine. This textbook spans all fields of nanoscience, covering its basics and broad applications. After an introduction to the physical and chemical principles of nanoscience, coverage moves on to the adjacent fields of microscopy, nanoanalysis, synthesis, nanocrystals, nanowires, nanolayers, carbon nanostructures, bulk nanomaterials, nanomechanics, nanophotonics, nanofluidics, nanomagnetism, nanotechnology for computers, nanochemistry, nanobiology, and nanomedicine. Consequently, this broad yet unified coverage addresses research in academia and industry across the natural scientists. Didactically structured and replete with hundreds of illustrations, the textbook is aimed primarily at graduate and advanced-undergraduate students of natural sciences and medicine, and their lecturers.
This book covers the state of the art of laser micro- and nanotechnology. The physical fundamentals of different processes and the application are presented. The book deals with different materials like phase change and memory alloys, thin films, polymers etc. New phenomena and mechanisms of laser-matter interaction in nano-domains are explained. This book is helpful for students, postgraduates, engineers and researches working not only in the field of laser microtechnology but also in high-tech industry, like photonics, microelectronics, information technology.
This book is a collection of experimental studies demonstrating structure-function relationships in various biological systems having particular surface specialization to increase/decrease friction and adhesion. Studies on snake skin, adhesive pads, wing-interlocking devices and sticky mouthparts of insects as well as anti-adhesive and adhesive surfaces of plants are included in the volume containing four main subsections: (1) adhesion, (2) friction, (3) attachment-devices, (4) attachment-related behavior. Numerous experimental methods for characterizing tribological properties of biological surfaces at macro-, micro-, and nanoscale levels are demonstrated. This book is an excellent collection of publications on biotribology for both engineers and physicists working with biological systems as well as for biologists studying friction and adhesion. Inspirations from biology reported here may be also potentially interesting for biomimetics.
This book teaches the users on how to construct a library of routines to simulate scattering and diffraction by almost any kind of samples. The main goal of this book is to break down the huge barrier of difficulties faced by beginners from many fields (Engineering, Physics, Chemistry, Biology, Medicine, Material Science, etc.) in using X-rays as an analytical tool in their research. Besides fundamental concepts, MatLab routines are provided, showing how to test and implement the concepts. The major difficult in analysing materials by X-ray techniques is that it strongly depends on simulation software. This book teaches the users on how to construct a library of routines to simulate scattering and diffraction by almost any kind of samples. It provides to a young student the knowledge that would take more than 20 years to acquire by working on X-rays and relying on the available textbooks. The scientific productivity worldwide is growing at a breakneck pace, demanding ever more dynamic approaches and synergies between different fields of knowledge. To master the fundamentals of X-ray physics means the opportunity of working at an infiniteness of fields, studying systems where the organizational understanding of matter at the atomic scale is necessary. Since the discovery of X radiation, its usage as investigative tool has always been under fast expansion afforded by instrumental advances and computational resources. Developments in medical and technological fields have, as one of the master girders, the feasibility of structural analysis offered by X-rays. One of the major difficulties faced by beginners in using this fantastic tool lies in the analysis of experimental data. There are only few cases where it is possible to extract structural information directly from experiments. In most cases, structure models and simulation of radiation-matter interaction processes are essential. The advent of intense radiation sources and rapid development of nanotechnology constantly creates challenges that seek solutions beyond those offered by standard X-ray techniques. Preparing new researchers for this scenario of rapid and drastic changes requires more than just teaching theories of physical phenomena. It also requires teaching of how to implement them in a simple and efficient manner. In this book, fundamental concepts in applied X-ray physics are demonstrated through available computer simulation tools. Using MatLab, more than eighty routines are developed for solving the proposed exercises, most of which can be directly used in experimental data analysis. Therefore, besides X-ray physics, this book offers a practical programming course in modern high-level language, with plenty of graphic and mathematical tools.
The two volumes of Handbook of Gas Sensor Materials provide a detailed and comprehensive account of materials for gas sensors, including the properties and relative advantages of various materials. Since these sensors can be applied for the automation of myriad industrial processes, as well as for everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and in many other situations, this handbook is of great value. Gas sensor designers will find a treasure trove of material in these two books.
Challenges in Mechanics of Time-Dependent Materials, Volume 2 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the second volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers in the following general technical research areas: Time-dependence in Metallic Materials Rate and Time Effects Additive Manufacturing General Materials Response
This book reviews the recent development of fabrication methods and various properties of lotus-type porous metals and their applications. The nucleation and growth mechanism of the directional pores in metals are discussed in comparison with a model experiment of carbon dioxide pores in ice. Three casting techniques are introduced to produce not only metals and alloys but also intermetallic compounds, semiconductors, and ceramics: mold casting, continuous zone melting, and continuous casting. The latter has merits for mass production of lotus metals to control porosity, pore size and pore direction. Furthermore, anisotropic behavior of elastic, mechanical properties, thermal and electrical conductivity, magnetic properties, and biocompatibility are introduced as peculiar features of lotus metals.
Advancement of Optical Methods in Experimental Mechanics, Volume 3 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the third volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of optical methods ranging from traditional photoelasticity and interferometry to more recent DIC and DVC techniques, and includes papers in the following general technical research areas: Advanced optical interferometry Developments in Image correlation (Digital &Volumetric ) Full Field Methods Novel Optical Methods for Stress/Strain Analysis Advances in Optical Methods
The book presents a series of concise papers by researchers specialized in various fields of continuum and computational mechanics and of material science. The focus is on principles and strategies for multiscale modeling and simulation of complex heterogeneous materials, with periodic or random microstructure, subjected to various types of mechanical, thermal, chemical loadings and environmental effects. A wide overview of complex behavior of materials (plasticity, damage, fracture, growth, etc.) is provided. Among various approaches, attention is given to advanced non-classical continua modeling which, provided by constitutive characterization for the internal and external actions (in particular boundary conditions), is a very powerful frame for the gross mechanical description of complex material behaviors, able to circumvent the restrictions of classical coarse-graining multiscale approaches.
This book is written for scientists involved in the calibration of viscometers. A detailed description for stepping up procedures to establish the viscosity scale and obtaining sets of master viscometers is given in the book. Uncertainty considerations for standard oils of known viscosity are presented. The modern viscometers based on principles of tuning fork, ultrasonic, PZT, plate waves, Love waves, micro-cantilever and vibration of optical fiber are discussed to inspire the reader to further research and to generate improved versions. The primary standard for viscosity is pure water. Measurements of its viscosity with accuracy/uncertainty achieved are described. The principles of rotational and oscillation viscometers are explained to enhance the knowledge in calibration work. Devices used for specific materials and viscosity in non SI units are discussed with respect to the need to correlate viscosity values obtained by various devices. The description of commercial viscometers meets the needs of the user.
In two parts, the book focusses on materials science developments in the area of 1) Materials Data and Informatics: - Materials data quality and infrastructure - Materials databases - Materials data mining, image analysis, data driven materials discovery, data visualization. 2) Materials for Tomorrow's Energy Infrastructure: - Pipeline, transport and storage materials for future fuels: biofuels, hydrogen, natural gas, ethanol, etc. -Materials for renewable energy technologies This book presents selected contributions of exceptional young postdoctoral scientists to the 4th WMRIF Workshop for Young Scientists, hosted by the National Institute of Standards and Technology, at the NIST site in Boulder, Colorado, USA, September 8 to September 10, 2014.
"Handbook of Thin Film Technology" covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.
This book presents studies on the inelastic behavior of materials and structures under monotonic and cyclic loads. It focuses on the description of new effects like purely thermal cycles or cases of non-trivial damages. The various models are based on different approaches and methods and scaling aspects are taken into account. In addition to purely phenomenological models, the book also presents mechanisms-based approaches. It includes contributions written by leading authors from a host of different countries.
This book highlights the basics of crystal optics methods and refractive index (RI) measurement techniques in various solids, as well as their scientific and technological applications. In addition to new techniques for cases when traditional techniques are impractical, such as for highly refracting powders, anomalous dispersion of light in the studied solid, or for colloids, it also describes conventional methods of RI measurement.
This book presents a comprehensive review of the most important methods used in the characterisation of piezoelectric, ferroelectric and pyroelectric materials. It covers techniques for the analysis of bulk materials and thick and thin film materials and devices. There is a growing demand by industry to adapt and integrate piezoelectric materials into ever smaller devices and structures. Such applications development requires the joint development of reliable, robust, accurate and – most importantly – relevant and applicable measurement and characterisation methods and models. In the past few years there has been a rapid development of new techniques to model and measure the variety of properties that are deemed important for applications development engineers and scientists. The book has been written by the leaders in the field and many chapters represent established measurement best practice, with a strong emphasis on application of the methods via worked examples and detailed experimental procedural descriptions. Each chapter contains numerous diagrams, images, and measurement data, all of which are fully referenced and indexed. The book is intended to occupy space in the research or technical lab, and will be a valuable and practical resource for students, materials scientists, engineers, and lab technicians.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoy a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
This thesis describes novel approaches and implementation of high-resolution microscopy in the extreme ultraviolet light regime. Using coherent ultrafast laser-generated short wavelength radiation for illuminating samples allows imaging beyond the resolution of visible-light microscopes. Michael Zürch gives a comprehensive overview of the fundamentals and techniques involved, starting from the laser-based frequency conversion scheme and its technical implementation as well as general considerations of diffraction-based imaging at nanoscopic spatial resolution. Experiments on digital in-line holography and coherent diffraction imaging of artificial and biologic specimens are demonstrated and discussed in this book. In the field of biologic imaging, a novel award-winning cell classification scheme and its first experimental application for identifying breast cancer cells are introduced. Finally, this book presents a newly developed technique of generating structured illumination by means of so-called optical vortex beams in the extreme ultraviolet regime and proposes its general usability for super-resolution imaging.
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress. |
![]() ![]() You may like...
Stress Corrosion Cracking - Theory and…
V. S. Raja, T. Shoji
Paperback
Materials Under Extreme Conditions…
A.K. Tyagi, S. Banerjee
Hardcover
Crystallization as Studied by Broadband…
Tiberio A. Ezquerra, Aurora Nogales
Hardcover
R2,960
Discovery Miles 29 600
ZIF-8 Based Materials for Pharmaceutical…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,981
Discovery Miles 49 810
Materials Phase Change PDE Control…
Shumon Koga, Miroslav Krstic
Hardcover
R3,485
Discovery Miles 34 850
Non-Destructive In Situ Strength…
Denys Breysse, Jean Paul Balayssac
Hardcover
R4,154
Discovery Miles 41 540
|