![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
Carbon nanotubes (CNTs) and Boron nitride nanotubes (BNNTs) are part of the so-called B-C-N material system, which includes novel nanostructures of carbon (C), doped-carbon, boron (B), boron nitride (BN), carbon nitride (CNx), boron-carbon nitride (BxCyNz), and boron carbide (BxCy). BNNTs and CNTs are structurally similar and share extraordinary mechanical properties, but they differ in chemical, biological, optical, and electrical properties. Therefore, hybrid nanotubes constructed of B, C, N elements are expected to form a new class of nanotubes with tunable properties between those of CNTs and BNNTs. In addition, these B-C-N nanostructures will further enhance and complement the applications of CNTs and BNNTs. With contributions from leading experts, B-C-N Nanotubes and Related Nanostructures is the first book to cover all theoretical and experimental aspects of this emerging material system, and meets the need for a comprehensive summary of the tremendous advances in research on B-C-N materials in recent years.
One of the key aspects of this volume is to cut across the traditional taxonomy of disciplines in the study of alloys. Hence there has been a deliberate attempt to integrate the different approaches taken towards alloys as a class of materials in different fields, ranging from geology to metallurgical engineering. The emphasis of this book is to highlight commonalities between different fields with respect to how alloys are studied. The topics in this book fall into several themes, which suggest a number of different classification schemes. We have chosen a scheme that classifies the papers in the volume into the categories Microstructural Considerations, Ordering, Kinetics and Diffusion, Magnetic Considerations and Elastic Considerations. The book has juxtaposed apparently disparate approaches to similar physical processes, in the hope of revealing a more dynamic character of the processes under consideration. This monograph will invigorate new kinds of discussion and reveal challenges and new avenues to the description and prediction of properties of materials in the solid state and the conditions that produce them.
Chemical vapor sensing arrays have grown in popularity over the past two decades, finding applications for tasks such as process control, environmental monitoring, and medical diagnosis. This is the first in-depth analysis of the process of choosing materials and components for these "electronic noses", with special emphasis on computational methods. For a view of component selection with an experimental perspective, readers may refer to the complementary volume of Integrated Microanalytical Systems entitled "Combinatorial Methodologies for Sensor Materials."
The idea of this monograph is to present the latest results related to design and analysis of materials and engineering structures. The contributions cover the field of mechanical and civil engineering, ranging from automotive to dam design, transmission towers and up to machine design and exmaples taken from oil industry. Well known experts present their research on damage and fracture of material and structures, materials modelling and evaluation up to image processing and visualization for advanced analyses and evaluation
This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that will be of direct use to practitioners. Extensive references are provided for those wishing to pursue certain issues in greater depth. While the primary audience is applied polymer scientists and plastics engineers, the book will also be of use to postgraduate students in polymer science and engineering and as a text for a graduate course.
"Polymeric and Nanostructured Macromolecules" presents the recent advances made in the synthesis, characterization, and applications of polymeric macromolecules. This book provides an excellent overview of the recent breakthroughs in the science of macromolecules, with an emphasis on nanostructured macromolecules and the perspectives that these versatile materials offer to different fields such as optoelectronics and biotechnology. Advanced undergraduate, graduate students and researchers alike will find the topics concerning physical and chemical properties of advanced macromolecular materials of great interest.
Heterogeneously catalyzed selective oxidations of alcohols is a highly topical field. The first chapter of this brief describes the importance of the selective oxidation of alcohols and advantages of heterogeneous catalysts over conventional catalysts, use of environmentally benign oxidants, and the design of selective catalysts by tailoring of polyoxometalates at the molecular level. Chapter 2 describes synthesis, characterization 11-molybdophosphate based supported materials and their use as heterogeneous catalysts for oxidation of alcohols with molecular oxygen under solvent free mild reaction condition. ZrO2, Al2O3, MCM-41 and zeolite H were used as supports. Chapter 3 describes synthesis, characterization of transition metals (Mn, Co, Ni, Cu)- substituted phosphomolybdates and their use as heterogeneous catalysts for oxidation of alcohols with molecular oxygen under solvent free mild reaction condition. Chapter 4 describes conclusive remarks for present catalytic systems.
C axis Current I ~ . The (11 0) thick homoepitaxial film of 320 nm -------~ ~-=-=--==---==--==--==--- shows a very good surface flatness, which --------** sJ;1 0] suggests the unique (110) atomic plane helps 2- A [1 1 OJ dimensional epitaxial growth of YBCO films, and shows excellent high Tc. The resultant 1. 0 surface morphology of YBCO is quite different Q ,. -- R(270)=1. 60 m 0 from the (110) heteroepitaxial films of similar 0 0. 0 " thickness [11). In the case of heteroepitaxy ~ . ,,_. 1. 0 irrespective of c-axis [ 12] or a-axis oriented ~ ~. . ,. R(270)=3. 71 m 0 films [5), only thin films show flat surfaces, g 0. 0 . . Tc=92. 3K "' which, however, give usually a degraded Tc due -~ 1. 0 v v I - to lattice mismatching. In conclusion, we have ::1. ,. . . . . R(270)=31. 9 mO succeeded to grow high-quality (11 0) YBCO ~ YBCO film . . Tc=90. 7 K 0. 0 *;:: YBCO(IIO) 1 0 *d*--~ YBCO thinfilms on (11 0) YBCO single crystal substrate ~Xtt=u 1. 0 substra substrates with very flat surfaces and high Tc's. :GBP R(270)=40. 1 m 0 0. 0 LLLLL. J. . . . LL~. t-J' L-Tc=9LWO. L-! L-K LLLLL. . . . L. . I. . . . l. . . . L. L. L. J. . . . . L. L. l. . . J 50 100 150 200 250 300 0 ACKNOWLEDGMENTS Temperature (K) One of the authors (T. U. ) would like to thank Fig.
Thematerialsusedinmanufacturingtheaerospace,aircraft,automobile,andnuclear parts have inherent aws that may grow under uctuating load environments during the operational phase of the structural hardware. The design philosophy, material selection, analysis approach, testing, quality control, inspection, and manufacturing are key elements that can contribute to failure prevention and assure a trouble-free structure. To have a robust structure, it must be designed to withstand the envir- mental load throughout its service life, even when the structure has pre-existing aws or when a part of the structure has already failed. If the design philosophy of the structure is based on the fail-safe requirements, or multiple load path design, partial failure of a structural component due to crack propagation is localized and safely contained or arrested. For that reason, proper inspection technique must be scheduled for reusable parts to detect the amount and rate of crack growth, and the possible need for repairing or replacement of the part. An example of a fail-sa- designed structure with crack-arrest feature, common to all aircraft structural parts, is the skin-stiffened design con guration. However, in other cases, the design p- losophy has safe-life or single load path feature, where analysts must demonstrate that parts have adequate life during their service operation and the possibility of catastrophic failure is remote. For example, all pressurized vessels that have single load path feature are classi ed as high-risk parts. During their service operation, these tanks may develop cracks, which will grow gradually in a stable manner.
In the past few decades, research in the science of electrodeposition of metals has shown the important practical applications of electronic, magnetic, energy devices and biomedical materials. The aim of this new volume is to review the latest developments electrodeposition and present them to teachers, professionals, and students working in the field.
John Keats, writing to Fanny Brawne [1], said "I long to believe in immortality ***** I wish to believe in immortality - I wish to live with you forever". So much of this talk will be concerned with the ductile behaviour of crystals, plasticity in its narrower sense. We shall consider a crystal which is deforming by slip, and shall expose a surface in this crystal. We first think of the sur face as a simple mathematical cut along a low-index plane. Then we allow for the relaxation of the newly-exposed atoms, and for surface irregularities, and we consider the effect of lattice va cancies which can enter at the surface. We consider the effect of dissolving off the surface layers, either intermittently or contin uously. Then the effects of adsorption or oxidation by normal con stituents of the atmosphere must be considered, the effects of sur face alloying, and finally those of special surface-active agents. But "All/Life death does end and each day dies with sleep" [2], and plasticity in its broader sense includes the fracture ~'1hich term inates flow. Here there is a bewildering array of effects. The medium in which the crystal flows may enhance its ductility enor mously, or it may cause it to break almost without plastic deform ation, or under a load which it has already supported.
There is a growing need in both industrial and academic research to obtain accurate quantitative results from continuous wave (CW) electron paramagnetic resonance (EPR) experiments. This book describes various sample-related, instrument-related and software-related aspects of obtaining quantitative results from EPR expe- ments. Some speci?c items to be discussed include: selection of a reference standard, resonator considerations (Q, B ,B ), power saturation, sample position- 1 m ing, and ?nally, the blending of all the factors together to provide a calculation model for obtaining an accurate spin concentration of a sample. This book might, at ?rst glance, appear to be a step back from some of the more advanced pulsed methods discussed in recent EPR texts, but actually quantitative "routine CW EPR" is a challenging technique, and requires a thorough understa- ing of the spectrometer and the spin system. Quantitation of CW EPR can be subdivided into two main categories: (1) intensity and (2) magnetic ?eld/mic- wave frequency measurement. Intensity is important for spin counting. Both re- tive intensity quantitation of EPR samples and their absolute spin concentration of samples are often of interest. This information is important for kinetics, mechanism elucidation, and commercial applications where EPR serves as a detection system for free radicals produced in an industrial process. It is also important for the study of magnetic properties. Magnetic ?eld/microwave frequency is important for g and nuclear hyper?ne coupling measurements that re?ect the electronic structure of the radicals or metal ions.
This volume of Modern Aspects covers a wide spread of topics presented in an authoritative, informative and instructive manner by some internationally renowned specialists. Professors Politzer and Dr. Murray provide a comprehensive description of the various theoretical treatments of solute-solvent interactions, including ion-solvent interactions. Both continuum and discrete molecular models for the solvent molecules are discussed, including Monte Carlo and molecular dynamics simulations. The advantages and drawbacks of the resulting models and computational approaches are discussed and the impressive progress made in predicting the properties of molecular and ionic solutions is surveyed. The fundamental and applied electrochemistry of the silicon/electrolyte interface is presented in an authoritative review by Dr. Gregory Zhang, with emphasis in the preparation of porous silicon, a material of significant technological interest, via anodic dissolution of monocrystalline Si. The chapter shows eloquently how fundamental electrokinetic principles can be utilized to obtain the desired product morphology. Markov chains theory provides a powerful tool for modeling several important processes in electrochemistry and electrochemical engineering, including electrode kinetics, anodic deposit formation and deposit dissolution processes, electrolyzer and electrochemical reactors performance and even reliability of warning devices and repair of failed cells. The way this can be done using the elegant Markov chains theory is described in lucid manner by Professor Thomas Fahidy in a concise chapter which gives to the reader only the absolutely necessary mathematics and is rich in practical examples.
One distinct feature of human society since the dawn of civilization is the systematic use of inorganic building materials, such as natural stone, unburnt and burnt soil, adobe and brick, inorganic binders like lime and cement, and reinforced concrete. Our heritage has cultural, architectural and technological value and preserving such structures is a key issue today. Planners and conservation scientists need detailed site surveys and analyses to create a database that will serve to guide subsequent actions. One factor in this knowledge base is an understanding of how historic materials were prepared and the crucial properties that influence their long-term behaviour. Any assessment of the way such materials perform must crucially be based on an understanding of the methods used for their analysis. The editors here add to the knowledge base treating the materials used in historic structures, their properties, technology of use and conservation, and their performance in a changing environment. The book draws together 18 chapters dealing with the inorganic materials used in historic structures, such as adobe, brick, stone, mortars, concrete and plasters. The approach is complex, covering material characterisation as well as several case studies of historic structures from Europe, including Germany, Ireland, Italy, Poland, Portugal, Scotland, Slovenia and Spain, and the My Son Temples in Vietnam. An equally important component of the book covers the analysis of materials, together with a treatment of sustainable development, such as the protection of monuments from earthquakes and climate change. The authors are all leading international experts, drawn from a variety of backgrounds: architecture, civil engineering, conservation science, geology and material science, with close links to professional organisations such as ICOMOS or universities and research centres throughout Europe. Audience: This book will be of interest to geologists, engineers, restorers, consulting engineers, designers and other professionals dealing with cultural heritage and sustainable development. Also graduate students in applied geo-science (mineralogy, geochemistry, petrology), architecture and civil engineering will find interesting information in this book.
The reader is provided with information about methods of calibration of light sources and photodetectors as well as responsiveness of spectral instruments ranging from near infrared to vacuum UV spectral, 1200 - 100 nm, and radiation intensities of up to several quanta per second in absolute and arbitrary units. The author describes for the first time original methods of measurements they created and draws upon over 40 years of experience in working with light sources and detectors to provide accurate and precise measurements. This book is the first to cover these aspects of radiometry and is divided into seven chapters that examine information about terminology, units, light sources and detectors, methods, including author's original ones, of absolute calibration of detectors, spectral instruments responsiveness, absolute measurements of radiation intensity of photoprocesses, and original methods of their study. Of interest to researchers measuring; luminescence spectra, light intensities from IR to vacuum UV, spectral range in wide-light intensity ranges, calibrate light sources and detectors, absolute or relative quantum yields of photoprocess determination.
A comprehensive account of the physical / mechanical behaviour of polyurethanes (PUs) elastomers, films and blends of variable crystallinity. Aspects covered include the elasticity and inelasticity of amorphous to crystalline PUs, in relation to their sensitivity to chemical and physical structure. A study is made of how aspects of the constitutive responses of PUs vary with composition: the polyaddition procedure, the hard segment, soft segment and chain extender (diols and diamines) are varied systematically in a large number of systems of model and novel crosslinked andthermoplastic PUs. Results will be related to: microstructural changes, on the basis of evidence from x-ray scattering (SAXS and WAXS), and also dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC) and IR dichroism. Inelastic effects will be investigated also by including quantitative correlations between the magnitude of the Mullins effect and the fractional energy dissipation by hysteresis under cyclic straining, giving common relations approached by all the materials studied. A major structural feature explored is the relationship between the nature of the hard segment (crystallising or not) and that of the soft segments. Crystallinity has been sometimes observed in the commercial PUs hard phase but this is usually limited to only a few percent for most hard segment structures when solidified from the melt. One particular diisocyanate, 4,4'-dibenzyl diisocyanate (DBDI) that, in the presence of suitable chain extenders ( diols or diamines), gives rise to significant degrees of crystallinity [i-iii] and this is included in the present work. Understanding the reaction pathways involved, in resolving the subtle morphological evolution at the nanometre level, and capturing mathematically the complex, large-deformation nonlinear viscoelastic mechanical behaviour are assumed to bring new important insights in the world basic research in polyurethanes and towards applied industrial research in this area.
This book describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications in medicine, materials science, and chemical engineering. It will be the first comprehensive account of this new device and its applications. Among the key advances of this method is that images can be obtained in much shorter times than originally anticipated, and that even vector maps of flow fields can be measured although the magnetic fields are highly inhomogeneous. Furthermore, the equipment is small, mobile and affordable to small and medium enterprises and can be located in doctors' offices.
This book presents highlighted results coming up from NanoCarbon2011, a Brazilian Carbon event. The topics cover the latest advances in Brazilian basic and applied research related to different carbon materials. The chapters address reviews on their fundamental and outstanding properties and describe various classes of new promising high-tech applications for carbon materials.
The measurement and characterisation of surface topography is crucial to modern manufacturing industry. The control of areal surface structure allows a manufacturer to radically alter the functionality of a part. Examples include structuring to effect fluidics, optics, tribology, aerodynamics and biology. To control such manu facturing methods requires measurement strategies. There is now a large range of new optical techniques on the market, or being developed in academia, that can measure areal surface topography. Each method has its strong points and limitations. The book starts with introductory chapters on optical instruments, their common language, generic features and limitations, and their calibration. Each type of modern optical instrument is described (in a common format) by an expert in the field. The book is intended for both industrial and academic scientists and engineers, and will be useful for undergraduate and postgraduate studies.
Composite Materials and the First International Symposium on Joining Technologies for Composites, Volume 7: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics represents one of seven volumes of technical papers presented at the Society for Experimental Mechanics SEM 12th International Congress & Exposition on Experimental and Applied Mechanics, held at Costa Mesa, California, June 11-14, 2012. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Challenges in Mechanics of Time -Dependent Materials and Processes in Conventional and Multifunctional Materials, Imaging Methods for Novel Materials and Challenging Applications, Experimental and Applied Mechanics, Mechanics of Biological Systems and Materials and, MEMS and Nanotechnology.
The field of Atomic and Molecular Physics (AMP) has reached significant advances in high-precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy, astrophysics, fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, postgraduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighboring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) Tokomak plasma machine, which need accurate AMP data.
Numerous works on non-destructive testing of food quality have been reported in the literature. Techniques such as Near InfraRed (NIR) spectroscopy, color and visual spectroscopy, electronic nose and tongue, computer vision (image analysis), ultrasound, x-ray, CT and magnetic resonance imaging are some of the most applied for that purpose and are described in this book. Aspects such as theory/basics of the techniques, practical applications (sampling, experimentation, data analysis) for evaluation of quality attributes of food and some recent works reported in literature are presented and discussed. This book is particularly interesting for new researchers in food quality and serves as an updated state-of-the-art report for those already familiar with the field.
This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes laboratory exercises.
This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.
Proceedings of the 3rd Joint International Conference on Hyperfine Interactions and International Symposium on Nuclear Quadrupole Interactions, HFI/NQI 2010 held at CERN, Switzerland, September 13-17, 2010 Reprinted from Hyperfine Interactions Volume. This volume focuses on the most recent studies on all aspects of hyperfine interaction detected by nuclear radiation and nuclear quadrupole interactions detected by resonance methods in the areas of materials, biological and medical science, as well as on contributions on new developments in instrumentation and methods, ab initio calculations and simulations. This volume comprises research papers, reviews, and short communications recording original investigations related to: Theory on Hyperfine Interactions (HFI) and Nuclear Moments; Magnetism and Magnetic Materials (Bulk and Thin Layers); HFI probes in Semiconductors, Metals and Insulators; Lattice Dynamics and Ion-Solid Interactions; Surfaces, Interfaces, Thin Films, and Nano-structures; Resonance Methods; Nuclear Moments, Nuclear Polarization and Spin Dynamics; Investigations in Biology, Chemistry, and Medicine; New Directions and Developments in Methodology. The papers present the latest scientific work of various invited speakers and contributor researchers from the five continents that have brought their perspectives to the meeting. |
![]() ![]() You may like...
Sustained Simulation Performance 2018…
Michael M Resch, Yevgeniya Kovalenko, …
Hardcover
R4,362
Discovery Miles 43 620
Numeric Computation and Statistical Data…
Sergei V. Chekanov
Hardcover
R3,003
Discovery Miles 30 030
CABology: Value of Cloud, Analytics and…
Nitin Upadhyay
Hardcover
Topics in Numerical Partial Differential…
Susanne C. Brenner
Hardcover
R3,485
Discovery Miles 34 850
|