![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
When the DFG (Deutsche Forschungsgemeinschaft) launched its collabora tive research centre or SFB (Sonderforschungsbereich) 438 "Mathematical Modelling, Simulation, and Verification in Material-Oriented Processes and Intelligent Systems" in July 1997 at the Technische Vniversitat Munchen and at the Vniversitat Augsburg, southern Bavaria got its second nucleus of the still young discipline scientific computing. Whereas the first and older one, FORTWIHR, the Bavarian Consortium for High Performance Scientific Com puting, had put its main emphasis on the supercomputing aspect, this new initiative was now expected to focus on the mathematical part. Consequently, throughout all of the five main research topics (A) adaptive materials and thin layers, (B) adaptive materials in medicine, (C) robotics, aeronautics, and automobile technology, (D) microstructured devices and systems, and (E) transport processes in flows, mathematical aspects play a predominant role. The formation of the SFB 438 and its scientific program are inextricably linked with the name of Karl-Heinz Hoffmann. As full professor for applied mathematics in Augsburg (1981-1991) and in Munchen (since 1992) and as dean of the faculty of mathematics at the TV Munchen, he was the driv ing force of this fascinating, but not always easy-to-realize idea of bringing together scientists from mathematics, physics, engineering, informatics, and medicine for joint efforts in modern applied mathematics. However, scarcely work had begun when the successful captain was called to take command on a bigger boat."
This is the first book on mathematical simulation on glass technology, and covers all production steps of special glass manufacturing. The enclosed CD-ROM shows 27 simulations of different aspects, such as surprising details of the pressing and casting process.
This volume contains a peer reviewed selection of the papers presented at the highly successful fifteenth meeting of the European Colloid and Interface Society which was held in Coimbra, Portugal in September 2001 and highlights some of the important advances in this area. The topics covered include Self Assembly in Mixed Systems, Surface Modification, Biological and Biomimetic Systems, Theory and Modelling, New Techniques and Developments, Food and Pharmaceuticals, Dynamics at Interfaces and Mesoscopic and Mesoporous Systems. The volume is of interest to both academic and industrial scientists working with colloidal and interfacial systems in chemistry, physics and biology.
This book provides tools well suited for the quantitative
investigation of semiconductor electron microscopy. These tools
allow for the accurate determination of the composition of ternary
semiconductor nanostructures with a spatial resolution at near
atomic scales. The book focuses on new methods including strain
state analysis as well as evaluation of the composition via the
lattice fringe analysis (CELFA) technique. The basics of these
procedures as well as their advantages, drawbacks and sources of
error are all discussed. The techniques are applied to quantum
wells and dots in order to give insight into kinetic growth effects
such as segregation and migration. In the first part of the book
the fundamentals of transmission electron microscopy are provided.
These are needed for an understanding of the digital image analysis
techniques described in the second part of the book. There the
reader will find information on different methods of
In the field of plastics technology, the process of extrusion is widespread and important. It is employed in the compounding and pelletising of plastics materials, in their conversion into products (such as profiles, pipe, hose, sheet, film or bottles) and in the coating of wires, cables, paper, board or foil. A major reason for its use is the screw extruder's ability to melt efficiently and pump continuously large amounts of plastics materials. The understanding of the melting/pumping operation of the extruder and the development of larger and faster-running machines so as to give higher outputs have been given great attention and the results have been widely published. However, the whole manufacturing technology for extruded products has also developed, particularly in recent years. This has occurred not only by the use of modern screw extruders, but also by the incorporation of improved process control systems, the better design of dies and extrudate handling machinery and by the utilisation of improved plastics materials and additives. It is the purpose of this book to present selected topics which contribute to, or exemplify, these developments in extrusion-based processes.
The field of heavy metal halide glasses (namely fluorides) is only ten years old now, but it has developed rapidly since the discovery of fluorozirconate glasses by the group at the University of Rennes (France). The main reason for this was the early demonstration of the enormous potential of such glasses for use as long-haul ultra-low loss middle infrared waveguide materials, aided in part by the scientific interest held by their unusual short range structures. As a result, significant research efforts were initiated in the academic, government and industrial sectors in Europe, the United States and Japan. However, the search for a finished product has per haps led to a partial overlooking of some of the more funda mental aspects by the scientific community. After the initial excitement, the workers in this field are perhaps at a crossroads where attenuations lower than 1 dB/Km need to be obtained for long lengths of fiber of good chemical and thermal stability, in order to guarantee continual R&D sUE ports. Therefore, there is a strong need for a critical asses sment of the potential of halide glasses for infrared fiber optics and the formulation of recommendations for future re search in this area and other related fields."
In recent years, interest in the technology of gas cleaning has grown, driven partly by environmental legislation, but also by demands for increases in process efficiency and intensity - notable for power generation and waste incineration. This book, which leads on from our successful Gas Cleaning at High Temperatures, describes the present state of the art and its industrial applications.
Living in biofilms is the common way of life of microorganisms, transiently immobilized in their matrix of extracellular polymeric substances (EPS), interacting in many ways and using the matrix as an external digestion and protection system. This is how they have organized their life in the environment, in the medical context and in technical systems - and has helped make them the oldest, most successful and ubiquitous form of life. In this book, hot spots in current biofilm research are presented in critical and sometimes provocative chapters. This serves a twofold purpose: to provide an overview and to inspire further discussions. Above all, the book seeks to stimulate lateral thinking.
The present level of understanding of ion implantation is sufficient that implantation Ls being used not only as a tool in various fields of research, but also as an industrial )rocess. In these applications one uses either the implanted ions, or their energy, to nodify some properties of the target substance, and is therefore concerned with the spatial listribution of the ions or of their energy. Following the pioneering work of Bohr [1), ~indhard and his collaborators have evolved a general description of the behaviour of swift Lons slowing down in amorphous targets [2,3,4), a description which has been the basis of nuch other work in the field. Various approximate calculations have been based on this :heory, but it has not always been clear whether any disagreement between experiment and :heory is real or can be attributed to deficiencies in calculation. It is the purpose of :his volume to present the results of the Lindhard theory, calculated in an exact manner, :o serve as a guide to the users of implantation, as a tabulation of theoretical results for experimentalists to compare with, and as a statement of the theoretical results either ~s a standard for comparison for approximate calculations or as a starting point for a more ietailed theory. Results are presented in tables and in graphs, the graphs being intended to display the qualitative features so as to illustrate the competition of the various phy sical processes determining the spatial distribution of the collision cascade.
The second edition of this textbook is identical with its fourth German edi tion and it thus has the same goals: precise definition of basic phenomena, a broad survey of the whole field, integrated representation of chemistry, physics, and technology, and a balanced treatment of facts and comprehen sion. The book thus intends to bridge the gap between the often oversimpli fied introductory textbooks and the highly specialized texts and monographs that cover only parts of macromolecular science. The text intends to survey the whole field of macromolecular science. Its organization results from the following considerations. The chemical structure of macromolecular compounds should be inde pendent of the method of synthesis, at least in the ideal case. Part I is thus concerned with the chemical and physical structure of polymers. Properties depend on structure. Solution properties are thus discussed in Part II, solid state properties in Part III. There are other reasons for dis cussing properties before synthesis: For example, it is difficult to understand equilibrium polymerization without knowledge of solution thermodynamics, the gel effect without knowledge of the glass transition temperature, etc. Part IV treats the principles of macromolecular syntheses and reactions.
This text on numerical methods applied to the analysis of electromagnetic nondestructive testing (NOT) phenomena is the first in a series devoted to all aspects of engineering nondestructive evaluation. The timing of this series is most appropriate as many university engineering/physics faculties around the world, recognizing the industrial significance of the subject, are organizing new courses and programs with engineering NOE as a theme. Additional texts in the series will cover electromagnetics for engineering NOE, microwave NOT methods, ultrasonic testing, radiographic methods and signal processing for NOE. It is the intended purpose of the series to provide senior-graduate level coverage of the material suitable for university curricula and to be generally useful to those in industry with engineering degrees who wish to upgrade their NOE skills beyond those needed for certification. This dual purpose for the series reflects the very applied nature of NOE and the need to develop suitable texts capable of bridging the gap between research laboratory studies of NOE phenomena and the real world of certification and industrial applications. The reader might be tempted to question these assertions in light of the rather mathematical nature of this first text. However, the subject of numerical modeling is of critical importance to a thorough understanding of the field-defect interactions at the heart of all electromagnetic NOT phenomena.
This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc tion to the field for potential new participants, an in-depth and broad exposure for stu dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials and with various intercalants, and an elaboration of the complementarity of intercalated layered materials with deliberately structured superlattices."
Das Buch enthalt Kapitel uber: N. Kinjo, M. Ogata, Ibaraki-ken; K. Nishi, Tokyo; A. Kaneda, Yokohama, Japan: Epoxyd-Formmassen als Einschlussmaterialien fur mikroelektronische Gerate Yu.S. Lipatov, T.E. Lipatova, L.F. Kosyanchuk, Kiev, UdSSR: Synthese und Struktur struktureller Makromolekule K. Horie, I. Mita, Tokyo, Japan: Reaktionen und Photodynamik in polymeren Festkorpern Yu.K. Godovsky, V.S. Papkov, Moskau, UdSSR: Thermotrope Mesophasen elementorganischer Polymere
F.K. Lehner: A Review of the Linear Theory of Anisotropic Poroelastic Solids. - J.W. Rudnicki: Eshelby's Technique for Analyzing Inhomogeneities in Geomechanics. - Y. Gueguen, M. Kachanov: Effective Elastic Properties of Cracked and Porous Rocks - an Overview. - J.L. Raphanel: 3D Morphology Evolution of Solid-Fluid Interfaces by Pressure Solution. - Y.M. Leroy: An Introduction to the Finite-Element Method for Linear and Non-linear Static Problems. The mechanical behaviour of the earth's upper crust enters into a great variety of questions in different areas of the geological and geophysical sciences as well as in the more applied geotechnical disciplines. This volume presents a selection of papers from a CISM course in Udine on this topic. While each of these chapters will make for a useful contribution in its own right, the present bundle also illustrates, by way of examples, the variety of theoretical concepts and tools that are currently brought to bear on earth deformation studies, ranging from reviews of poroelastic field theory to micro-mechanical and homogenization studies, chemomechanics and interfacial stability theory of soluble solids under stress, and finally to an introduction to the finite element method.
The IUTAM Symposium on Constitutive Relation in High/Very High Strain Rates (CRHVHSR) was held October 16 - 19, 1995, at Seminar House, Science University of Tokyo, under the sponsorship of IUTAM, Japan Society for the Promotion of Science, The Commemorative Association for the Japan World Exposition (1970), Inoue Foundation for Science, The Japan Society for Aeronautical and Space Sciences, and Science University of Tokyo. The proposal to hold the symposium was accepted by the General Assembly of IUT AM held in Haifa, Israel, in August 1992, and the scientists mentioned below were appointed by the Bureau of IUTAM to serve as members of the Scientific Committee. The main object of the symposium was to make a general survey of recent developments in the research of constitutive relations in high and very high strain rates and related problems in high velocity solid mechanics, and to explore further new ideas for dealing with unresolved problems of a fundamental nature as well as of practical importance. The subjects covered theoretical, experimental, and numerical fields in the above-mentioned problems in solids, covering metals, polymers, ceramics, and composites. Emphasis was given to the following fields: 1. Material characterization of solids in high velocity deformation, experimental techniques, typical data obtained by these techniques, modeling, and constitutive relations 2. Strain rate dependent elasto-visco-plastic stress waves 3. Crack initiation, propagation, and dynamic fracture toughness 4. Dynamic stress concentration 5. Structural dynamics in impact and constitutive relations of solids 6.
The liquid crystalline state may be identified as a distinct and unique state of matter which is characterised by properties which resemble those of both solids and liquids. It was first recognised in the middle of the last century through the study of nerve myelin and derivatives of cholesterol. The research in the area really gathered momentum, however, when as a result of the pioneering work of Gray in the early 1970's organic compounds exhibiting liquid crystalline properties were shown to be suitable to form the basis of display devices in the electronic products. The study of liquid crystals is truly multidisciplinary and has attached the attention of physicists, biologists, chemists, mathematicians and electronics engineers. It is therefore impossible to cover all these aspects fully in two small volumes and therefore it was decided in view of the overall title of the series to concentrate on the structural and bonding aspects of the subject. The Chapters presented in these two volumes have been organised to cover the following fundamental aspects of the subiect. The calculation of the structures of liquid crystals, an account of their dynamical properties and a discussion of computer simulations of liquid crystalline phases formed by Gay Berne mesogens. The relationships between molecular conformation and packing are analysed in some detail. The crystal structures of liquid crystal mesogens and the importance of their X ray scattering properties for characterisational purposes are discussed.
This monograph deals with ion induced electron emission from crystalline solids bombarded by fast ions. During the past decade, electron spectroscopy combined with the ion channeling technique has revealed various "messages" about ion solid and electron solid interactions carried by the emitted elec trons. While the ion induced electrons produced by binary encounter pro cesses are of primary interest in this book, closely related topics such as the emission of ion induced Auger electrons from crystal targets are also reviewed, with emphasis on their interdisciplinary aspects, for example, their relation to photoelectron diffraction. In addition to these topics, the book describes the underlying physics and experimental techniques so that it should provide useful information for students and scientists working in ion beam based re search and development in various areas of atomic and solid state physics, materials science, surface science, etc. I am much indebted to the gererations of students who have passed through my laboratory, since they have stimulated me with elementary but essential questions in various phases of the studies. I am also grateful to T. Azuma, Y. Kido, K. Kimura, H. Naramoto, and S. Seki for critical reading of the manuscript. Tsukuba, August 2001 Hiroshi Kudo Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1o Terminology and Table of Symbols . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2. 1 Notes on Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 2 Frequently Used Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Binary Encounter Electron Emission . . . . . . . . . . . . . . . . . . . . . . 7 3. 1 Ion Electron Elastic Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. 2 Recoil Cross Section of Orbital Electrons . . . . . . . . . . . . . . . . . .
The production of multi layered thin films with sufficient reliability is a key technology for device fabrication in micro electronics. In the Co/Cu type multi layers, for example, magnetoresistance has been found as large as 80 % at 4. 2 K and 50 % at room temperature. In addition to such gigantic mag netoresistance, these multi layers indicate anti ferromagnetic and ferromag netic oscillation behavior with an increase in the thickness of the layers of the non magnetic component. These interesting properties of the new synthetic flmctional materials are attributed to their periodic and interracial structures at a microscopic level, although the origin of such peculiar features is not fully understood. Information on the surface structure or the number density of atoms in the near surface region may provide better insight. Amorphous alloys, frequently referred to as metallic glasses, are produced by rapid quenching from the melt. The second generation amorphous alloys, called "bulk amorphous alloys," have been discovered in some Pd based and Zr based alloy systems, with a super cooled liquid region at more than 120 K. In these alloy systems, one can obtain a sample thickness of several centime ters. Growing scientific and technological curiosity about the new amorphous alloys has focused on the fundamental factors, such as the atomic scale struc ture, which are responsible for the thermal stability with certain chemical compositions.
Continued and systematic analysis of the mechanics of flexible fibre assemblies dates from about 1945, although the growth of research into textiles after 1920 had included studies of fabric structure and the measurement of mechanical properties. The subject is thus a young one, although this NATO Advanced Study Institute is a sign of developing maturity. However there is an earlier tradition. Relevant, even if somewhat loosely connected, quotations can be found in the works of the engineers of the ancient civilisations, recurring during the llenaissance with Leonardo da Vinci and Galileo. But the glorious libk is with Euler and the Bernoulli family, with their theories of the mechanics of flexible slender rods. While mathematicians have admired the beauty of this work, the invention of elliptic integrals, and the grace of the different classes of planar elastica, it is in the technology of textile materials, composed of flexible fibres and yarns, that the subject has found its more direct application. All this, and much more such as Max Born's doctoral thesis, was brought to our attention in a delightful discourse by Milos Konopasek, who is not only fascinated by the mathematics of Euler and the modern movement of the solutions of bending curves from two dimensions into three by the use of the computer, but also feels a personal link through having lived and studied within sight of the scene of Euler's triumphs in St. Petersburg.
Some years ago in Paisley (Scotland) the International Conference on Composite Materials, headed by Professor I. Marshall, took place. During the conference, I presented a paper on the manufacturing and properties of the Soviet Union's composite materials. Soviet industry had made great achievements in the manufacturing of composite materials for aerospace and rocket applications. For example, the fraction of composites (predominantly carbon fibre reinforced plastics) in the large passenger aircrafts Tu-204 and 11-86 is 12-15% of the structure weight. The percentage by weight share of composites in military aircraft is greater and the fraction of composites (organic fibre reinforced plastics) used in military helicopters exceeds a half of the total structure weight. The nose parts of most rockets are produced in carbon-carbon materials. In the Soviet spacecraft 'Buran' many fuselage tubes are made of boron-aluminium composites. Carbon-aluminium is used for space mirrors and gas turbine blades. These are just a few examples of applications. Many participants at the Paisley conference suggested that the substantial Soviet experience in the field of composite materials should be distilled and presented in the form of a comprehensive reference publication. So the idea of the preparation and publication of a six volume work Soviet Advanced Composites Technology, edited by Academician J. Fridlyander and Professor I. Marshall, was born.
F.J. Balta-Calleja, A. Gonzalez Arche, T.A. Ezquerra, C. Santa Cruz, F. Batallan, B. Frick, G.A. Arche, E. Lopez Cabarcos, Structure and Properties of Ferroelectric Copolymers of Poly (vinylidene) Fluoride H.G. Kilian, T. Pieper Packing of Chain Segments: A Method for Describing X-Ray Patterns of Crystalline, Liquid Crystalline and Non-Crystalline Polymers K. Miyasaka PVA-Iodine Complexes: Formation, Structure and Properties
The IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media took place at the University of Sydney from January 18- 22, 1999. It brought together leading researchers from eleven countries for a week-long meeting, with the aim of providing cross-links between the com- nities studying related problems involving elastic and electromagnetic waves in structured materials. After the meeting, participants were invited to submit articles based on their presentations, which were refereed and assembled to constitute these Proceedings. The topics covered here represent areas at the forefront of research intoelastic and electromagnetic waves. They include effect of nonlinearity, diffusion and multiple scattering on waves, as well as asymptotic and numerical techniques. Composite materials are discussed in depth, with example systems ranging fromdusty plasmas to a magneto-elastic microstructured system. Also included are studies of homogenisation, that field which seeks to determine equivalent homogeneous systems which can give equivalent wave properties to structured materials, and inverse problems, in which waves are used as a probe to infer structural details concerning scattering systems. There are also strong groups of papers on the localization of waves by random systems, and photonic and phononic band gap materials. These are being developed by analogue with semiconductors for electrons, and hold out the promise of enabling designers to control the propagation of waves through materials in novel ways. We would like to thank the other members of the Scientific Committee (A. |
You may like...
The Chase - Trusting God With Your…
Kyle Kupecky, Kelsey Kupecky, …
Paperback
(3)R285 Discovery Miles 2 850
|