![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Nuclear chemistry, photochemistry & radiation
Das Buch deckt neben den Themen der Entstehung, der Eigenschaften sowie Detektion von R ntgenstrahlen, die Entwicklungshistorie der Computertomographie, die elementaren Methoden der Signalverarbeitung und insbesondere die Signalverarbeitungsverfahren der Computertomographie ab. Hierbei wird Wert auf die ausf hrliche Darstellung der Mathematik der zwei- und dreidimensionalen Rekonstruktionsverfahren gelegt. Neben der ausf hrlichen Erkl rung der theoretischen Konzepte wird auf die praktischen Randbedingungen der technischen Realisierung sowie auf die auftretenden Bildartefakte besonders eingegangen.
This thesis explores two distinct applications of laser spectroscopy: the study of nuclear ground state properties, and element selective radioactive ion beam production. It also presents the methods and results of an investigation into isotope shifts in the mercury isotopic chain. These Resonance Ionization Laser Ion Source (RILIS) developments are detailed, together with an RILIS ionization scheme that allowed laser ionized ion beams of chromium, germanium, radium and tellurium to be generated at the Isotope Mass Separator On-Line (ISOLDE) facility. A combination of laser spectroscopy with decay spectroscopy and mass spectrometry unambiguously demonstrated a cessation of the extreme shape staggering first observed in the 1970s and revealed the characteristic kink at the crossing of the N=126 shell closure. A series of RILIS developments were required to facilitate this experiment, including mercury "ionization scheme" development and the coupling of the RILIS with an arc discharge ion source. Laser spectroscopy has since become a powerful tool for nuclear physics and the Resonance Ionization Laser Ion Source (RILIS), of the ISOLDE facility at CERN, is a prime example. Highlighting important advances in this field, the thesis offers a unique and revealing resource.
This textbook introduces the topic of special relativity, with a particular emphasis upon light-matter interaction and the production of light in plasma. The physics of special relativity is intuitively developed and related to the radiative processes of light. The book reviews the underlying theory of special relativity, before extending the discussion to applications frequently encountered by postgraduates and researchers in astrophysics, high power laser interactions and the users of specialized light sources, such as synchrotrons and free electron lasers. A highly pedagogical approach is adopted throughout, and numerous exercises are included within each chapter to reinforce the presentation of key concepts and applications of the material.
Principles of Molecular Photochemistry: An Introduction develops photochemical and photophysical concepts from a small set of familiar principles. Developed from Nick Turro's best-selling text for three decades - Modern Molecular Photochemistry - this updated primer introduces an initial paradigm that relates the photon and a reactant molecular structure to photochemistry through the structure and dynamics of electronically excited states, reactive intermediates and products. The same paradigm is readily adapted to incorporate the photon and a reactant molecular structure to photophysics. The book provides brilliantly clear descriptions in pictorial terms that can be readily understood by the student and applied to systems of interest. This text will be of interest to not only practicing photochemists and their students, but also to biological scientists, polymer scientists, material scientists and nanoscientists who use photochemistry and photophysics in their research and teaching.
This book is designed to serve as a textbook for core courses offered to postgraduate students enrolled in chemistry. This book can also be used as a core or supplementary text for nuclear chemistry courses offered to students of chemical engineering. The book covers various topics of nuclear chemistry like Shell model, fission/fusion reaction, natural radioactive equilibrium series, nuclear reactions carried by various types of accelerators. In addition, it describes the law of decay of radioactivity, type of decay, and interaction of radiation with matter. It explains the difference between ionization counter, scintillation counter and solid state detector. This book also consists of end-of-book problems to help readers aid self-learning. The detailed coverage and pedagogical tools make this an ideal textbook for postgraduate students and researchers enrolled in various chemistry and engineering courses. This book will also be beneficial for industry professionals in the allied fields.
The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This revised and updated 4th edition explores the challenges that faced the scientists and engineers of the Manhattan Project. It gives a clear introduction to fission weapons at the level of an upper-year undergraduate physics student by examining the details of nuclear reactions, their energy release, analytic and numerical models of the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design. An extensive list of references and a number of exercises for self-study are included. Revisions to this fourth edition include many upgrades and new sections. Improvements are made to, among other things, the analysis of the physics of the fission barrier, the time-dependent simulation of the explosion of a nuclear weapon, and the discussion of tamped bomb cores. New sections cover, for example, composite bomb cores, approximate methods for various of the calculations presented, and the physics of the polonium-beryllium "neutron initiators" used to trigger the bombs. The author delivers in this book an unparalleled, clear and comprehensive treatment of the physics behind the Manhattan project.
This textbook, intended for advanced undergraduate and graduate students, is an introduction to the physical and mathematical principles used in clinical medical imaging. The first two chapters introduce basic concepts and useful terms used in medical imaging and the tools implemented in image reconstruction, while the following chapters cover an array of topics such as physics of x-rays and their implementation in planar and computed tomography (CT) imaging; nuclear medicine imaging and the methods of forming functional planar and single photon emission computed tomography (SPECT) images and Clinical imaging using positron emitters as radiotracers. The book also discusses the principles of MRI pulse sequencing and signal generation, gradient fields, and the methodologies implemented for image formation, form flow imaging and magnetic resonance angiography and the basic physics of acoustic waves, the different acquisition modes used in medical ultrasound, and the methodologies implemented for image formation and flow imaging using the Doppler Effect. By the end of the book, readers will know what is expected from a medical image, will comprehend the issues involved in producing and assessing the quality of a medical image, will be able to conceptually implement this knowledge in the development of a new imaging modality, and will be able to write basic algorithms for image reconstruction. Knowledge of calculus, linear algebra, regular and partial differential equations, and a familiarity with the Fourier transform and it applications is expected, along with fluency with computer programming. The book contains exercises, homework problems, and sample exam questions that are exemplary of the main concepts and formulae students would encounter in a clinical setting.
Solar Energy Conversion and Storage: Photochemical Modes showcases the latest advances in solar cell technology while offering valuable insight into the future of solar energy conversion and storage. Focusing on photochemical methods of converting and/or storing light energy in the form of electrical or chemical energy, the book: Describes various types of solar cells, including photovoltaic cells, photogalvanic cells, photoelectrochemical cells, and dye-sensitized solar cells Covers the photogeneration of hydrogen, photoreduction of carbon dioxide, and artificial/mimicking photosynthesis Discusses the generation of electricity from solar cells, as well as methods for storing solar energy in the form of chemical energy Highlights existing photochemical methods of solar energy conversion and storage Explores emerging trends such as the use of nanoparticles Solar Energy Conversion and Storage: Photochemical Modes provides a comprehensive, state-of-the-art reference for graduate students, researchers, and engineers alike.
The chemical composition of any planetary atmosphere is of fundamental importance in determining its photochemistry and dynamics in addition to its thermal balance, climate, origin and evolution. Divided into two parts, this book begins with a set of introductory chapters, starting with a concise review of the Solar System and fundamental atmospheric physics. Chapters then describe the basic principles and methods of spectroscopy, the main tool for studying the chemical composition of planetary atmospheres, and of photochemical modeling and its use in the theoretical interpretation of observational data on chemical composition. The second part of the book provides a detailed review of the carbon dioxide atmospheres and ionospheres of Mars and Venus, and the nitrogen-methane atmospheres of Titan, Triton and Pluto. Written by an expert author, this comprehensive text will make a valuable reference for graduate students, researchers and professional scientists specializing in planetary atmospheres.
This open access book is a unique compilation of experimental benchmark analyses of the accelerator-driven system (ADS) at the Kyoto University Critical Assembly (KUCA) on the most recent advances in the development of computational methods. It is devoted especially to nuclear engineers and scientists. Readers will find a detailed description of advanced measurement techniques and calculation methodologies for the ADS with 14 MeV neutrons and high-energy neutrons (with combined use of 100 MeV protons and Pb-Bi target) at KUCA. Additionally, experimental results of nuclear transmutation of minor actinides by ADS and at a critical state are included. Readers also have access to benchmarks of specific ADS experiments with raw data in the Appendix. The book is a valuable resource for the ADS experiments at KUCA which are globally recognized as both static and kinetic studies from the point of view of fundamental research.
Learn about the properties of synchrotron radiation and its wide range of applications in physics, materials science and chemistry with this invaluable reference. This thorough text describes the physical principles of the subject, its source and methods of delivery to the sample, as well as the different techniques that use synchrotron radiation to analyse the electronic properties and structure of crystalline and non-crystalline materials and surfaces. Explains applications to study the structure and electronic properties of materials on a microscopic, nanoscopic and atomic scale. An excellent resource for current and future users of these facilities, showing how the available techniques can complement information obtained in users' home laboratories. Perfect for graduate and senior undergraduate students taking specialist courses in synchrotron radiation, in addition to new and established researchers in the field.
This thesis presents two significant results in the field of precision measurements in low-energy nuclear physics. Firstly, it presents a precise half-life determination of 11C, leading to the most precise ft-value for a beta decay transition between mirror nuclides, an important advance in the testing of the electroweak sector of the Standard Model. Secondly, it describes a high-precision mass measurement of 56Cu, a critical nucleus for determining the path of the astrophysical rapid-proton capture process, performed by the author using the LEBIT Penning trap at the National Superconducting Cyclotron Laboratory. This new measurement resolves discrepancies in previously-reported calculated mass excesses. In addition, the thesis also presents the construction and testing of a radio-frequency quadrupole cooler and buncher that will be part of the future N = 126 factory at Argonne National Laboratory aimed at producing nuclei of interest for the astrophysical rapid-neutron capture process for the first time.
Though thousands of articles and books have been published on various aspects of the Manhattan Project, this book is the first comprehensive single-volume history prepared by a specialist for curious readers without a scientific background. This project, the United States Army's program to develop and deploy atomic weapons in World War II, was a pivotal event in human history. The author presents a wide-ranging survey that not only tells the story of how the project was organized and carried out, but also introduces the leading personalities involved and features simplified but accurate descriptions of the underlying science and the engineering challenges. The technical points are illustrated by reader-friendly graphics. .
The story of superheavy elements - those at the very end of the periodic table - is not well known outside the community of heavy-ion physicists and nuclear chemists. But it is a most interesting story which deserves to be known also to historians, philosophers, and sociologists of science and indeed to the general public. This is what the present work aims at. It tells the story or rather parts of the story, of how physicists and chemists created elements heavier than uranium or searched for them in nature. And it does so with an emphasis on the frequent discovery and naming disputes concerning the synthesis of very heavy elements. Moreover, it calls attention to the criteria which scientists have adopted for what it means to have discovered a new element. In this branch of modern science it may be more appropriate to speak of creation instead of discovery. The work will be of interest to scientists as well as to scholars studying modern science from a meta-perspective.
These peer-reviewed NIC XV conference proceedings present the latest major advances in nuclear physics, astrophysics, astronomy, cosmochemistry and neutrino physics, which provide the necessary framework for a microscopic understanding of astrophysical processes. The book also discusses future directions and perspectives in the various fields of nuclear astrophysics research. In addition, it also includes a limited number of section of more general interest on double beta decay and dark matter.
A number of IAEA Member States generate relatively small quantities of radioactive waste and/or disused sealed sources in research or in the application of nuclear techniques in medicine and industry. This publication presents a modular approach to the design of waste processing and storage facilities to address the needs of such Member States with a cost effective and flexible solution that allows easy adjustment to changing needs in terms of capacity and variety of waste streams. The key feature of the publication is the provision of practical guidance to enable the users to determine their waste processing and storage requirements, specify those requirements to allow the procurement of the appropriate processing and storage modules and install and eventually operate those modules.
Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.
New geochemical and mineralogical data from research conducted under the IAEA coordinated research project entitled Geochemical and Mineralogical Characterization of Uranium and Thorium Deposits has resulted in a better understanding of the genesis of uranium and thorium mineralization. This publication presents a summary of the research and selected papers from the project’s partners. The results are expected to enhance exploration programmes, resource evaluation and sustainable supply of uranium and thorium for peaceful purposes.
There are several hundred thousand nuclear gauges incorporating a radioactive source or a radiation generator in use all over the world. They have been used in a wide range of industries to improve the quality of products, optimize processes, and save energy and materials. The economic benefits have been amply demonstrated, and there is clear evidence that nuclear gauge technology can be used safely and will continue to play an important role. Although generic guidance for source handling is available, there have been no targeted recommendations for radiation safety in the use of nuclear gauges. To fill this gap the current publication provides practical guidance for implementing the safety requirements specified in IAEA Safety Standards Series No. GSR Part 3, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, related to the use of nuclear gauges
Industrial computed tomography for advanced industrial non-destructive evaluation is a complex technological area, encompassing nuclear radiation detectors, mechanical engineering, computational mathematics and radiation physics. Additionally, the cost of applying this technology may be prohibitive. This guidebook provides an introduction to gamma computed tomography for non-destructive evaluation imaging in the simplest configuration. It is intended to be of use to the non-destructive testing community, currently practicing conventional radiography techniques. It provides clear information on the relevant practical issues and problems related to setting up computed tomography for industrial non-destructive testing and establishes a basis for understanding the intricacies of the technology
This Safety Guide provides recommendations on specific safety measures to meet the requirements of IAEA Safety Standards Series No. GSR Part 3 and other relevant Safety Requirements publications on the use of X ray generators and other types of radiation sources that are used for inspection purposes and for non-medical human imaging. The recommendations provided are primarily for organisations that are authorized to use X ray generators and other types of radiation sources for such purposes, as well as for radiation protection experts, radiation protection officers and staff of regulatory bodies. The publication may also be of interest to designers and manufacturers of relevant X ray generators and sources.
The renowned Oxford Chemistry Primer series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. Moreover, cutting-edge examples and applications throughout the texts show the relevance of the chemistry being described to current research and industry. The learning features provided, including questions at the end of every chapter and online multiple-choice questions, encourage active learning and promote understanding. Furthermore, frequent diagrams, margin notes, further reading, and glossary definitions all help to enhance a student's understanding of these essential areas of chemistry. NMR: The Toolkit describes succinctly the range of NMR techniques commonly used in modern research to probe the structures and properties of molecules in liquids. Emphasis is placed throughout on how these experiments actually work, giving a unique perspective on this powerful experimental tool. Online Resource Centre The Online Resource Centre to accompany NMR The Toolkit: How Pulse Sequences Work features: For registered adopters of the text: * Figures from the book available to download For students: * Full worked solutions to the end-of-chapter exercises
This proceedings volume results from the NATO Advanced Research Workshop on 'Biomarkers of Radiation in the Environment: Robust Tools for Risk Assessment (BRITE)'. The BRITE workshop discussed insights from cancer research, epigenetics, non-human and human risk assessment, since many of the state-of-the-art biomarkers being developed for humans deserve consideration for environmental applications and vice versa. Sessions were very wide-ranging covering methods, mechanisms, cross disciplinary application and regulation. The chapters in this book have been grouped into five major themes that were covered by the BRITE workshop: * Techniques for biomarker development * Low-dose effect mechanisms * Biomarkers for risk evaluation * Biomarkers in wildlife * Biomarker use and responses Each chapter has been written independently and reflects the views of the chapter author(s). Therefore, the readers can form their own balanced view of the different perspectives on biomarkers of radiation in the environment. Given the breadth of topics covered and the state-of-the-art perspectives shared by leading experts in their respective fields, this book should form a valuable resource for anyone with an interest in how biomarkers can be used to improve our understanding of radiation in the environment and its potential impacts.
Originally published in 1937, this book contains the modified text of the Henry Sidgwick Memorial Lecture for the previous year. Lord Rutherford discusses the contributions that the study of radiation can make to the problem of elemental transmutation, which mankind has attempted unsuccessfully for centuries. This book will be of value to anyone with an interest in radiation and historical attitudes towards it.
A review of contemporary actinide research that focuses on new advances in experiment and theory, and the interplay between these two realms Experimental and Theoretical Approaches to Actinide Chemistry offers a comprehensive review of the key aspects of actinide research. Written by noted experts in the field, the text includes information on new advances in experiment and theory and reveals the interplay between these two realms. The authors offer a multidisciplinary and multimodal approach to the nature of actinide chemistry, and explore the interplay between multiple experiments and theory, as well as between basic and applied actinide chemistry. The text covers the basic science used in contemporary studies of the actinide systems, from basic synthesis to state-of-the-art spectroscopic and computational techniques. The authors provide contemporary overviews of each topic area presented and describe the current and anticipated experimental approaches for the field, as well as the current and future computational chemistry and materials techniques. In addition, the authors explore the combination of experiment and theory. This important resource: Provides an essential resource the reviews the key aspects of contemporary actinide research Includes information on new advances in experiment and theory, and the interplay between the two Covers the basic science used in contemporary studies of the actinide systems, from basic synthesis to state-of-the-art spectroscopic and computational techniques Focuses on the interplay between multiple experiments and theory, as well as between basic and applied actinide chemistry Written for academics, students, professionals and researchers, this vital text contains a thorough review of the key aspects of actinide research and explores the most recent advances in experiment and theory. |
![]() ![]() You may like...
|