![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Nuclear chemistry, photochemistry & radiation
The present monograph summarizes, in a comprehensive way, several years of joint experimental and theoretical frontier research on ultrafast laser-induced molecular dynamics and its control. Emphasis is set on the characterization of the nuclear dynamics within molecular systems in various environments (gas phase, surfaces, solids, solution, strong fields) triggered by optical excitations spanning from the infrared to the ultraviolet. Building on the converged analysis between experiment and theory, control of chemical reactions is established by means of optimally shaped laser pulses. This paves the road toward new applications and future challenges in this rapidly developing research field.
Scientific research involving neutrons or synchrotron radiation is performed in large experimental installations at a few sites around the world. Taking full advantage of such techniques requires a wide range of specialized expertise not found in any university course. Therefore, there is a need for reference books and training courses to introduce young scientists to the underlying principles and methods. Neutron and X-Ray Spectroscopy delivers an up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources, including recent developments. The chapters are based on a course of lectures and practicals (the HERCULES course at the European Synchrotron Radiation Facility) delivered to young scientists who require these methods in their professional careers. Each chapter, written by a leading specialist in the field, introduces the basic concepts of the technique and provides an overview of recent work. This volume, which focuses on spectroscopic techniques in synchrotron radiation and inelastic neutron scattering, will be a primary source of information for physicists, chemists and materials scientists who wish to acquire a basic understanding of these techniques and to discover the possibilities offered by them. Emphasizing the complementarity of the neutron and X-ray methods, this tutorial will also be invaluable to scientists already working in neighboring fields who seek to extend their knowledge.
This is the ?fth volume in the Reviews in Fluorescence series. To date, four previous volumes have been both published and well received by the scienti?c community. Several book reviews in the last few years have also favorably remarked on the series. In this ?fth volume we continue the tradition of publishing leading edge and timely articles from authors around the world. With the recent Nobel Prize in Chemistry for 2008 being awarded for the discovery and development of the Green Fluorescent Protein (GFP) to Shimomura, Chal?e, and Tsien, we have subsequently included several timely reviews on GFP in this volume. We thank the authors for their timely and exciting contributions. We hope you ?nd this volume as useful as past volumes, which promises to be just as diverse with regard to ?uorescence-based content. Finally, in closing, I would like to thank Caroleann Aitken for helping coordin- ing content with authors and Michael Weston at Springer for help in publishing this current volume. Baltimore, MD, USA Chris D. Geddes v . Contents Fluorescence Anisotropy to Study the Preferential Orientation of Fluorophores in Ordered Bi-Dimensional Systems: Rhodamine 6G/Laponite Layered Films ...1 F. Lopez Arbeloa, V. Martinez, T. Arbeloa, and I. Lopez Arbeloa Room Temperature Tryptophan Phosphorescence of Proteins in the Composition of Biological Membranes and Solutions ...37 Vladimir M. Mazhul', Alexander V. Timoshenko, Ekaterina M.
This book presents the basic theories underlying x-ray and neutron scattering, as well as the various techniques that have been developed for their application to the study of polymers. The two scattering methods are discussed together from the beginning, so as to allow readers to gain a unified view of the scattering phenomena. The book is introductory and may be used as a textbook in polumer science class or for self-study by polymer scientists new in scattering techniques.
Applications of EPR in Radiation Research is a multi-author contributed volume presented in eight themes: I. Elementary radiation processes (in situ and low temperature radiolysis, quantum solids); II: Solid state radiation chemistry (crystalline, amorphous and heterogeneous systems); III: Biochemistry, biophysics and biology applications (radicals in biomaterials, spin trapping, free-radical-induced DNA damage); IV: Materials science (polymeric and electronic materials, materials for treatment of nuclear waste, irradiated food); V: Radiation metrology (EPR-dosimetry, retrospective and medical applications); VI: Geological dating; VII: Advanced techniques (PELDOR, ESE and ENDOR spectroscopy, matrix isolation); VIII: Theoretical tools (density-functional calculations, spectrum simulations).
Proceedings of the 13th International Conference on Hyperfine Interactions and 17th International Symposium on Nuclear Quadrupole Interactions, HFI/NQI 2004, held in Bonn, Germany, 22-27 August, 2004. Researchers and graduate students interested in hyperfine
interaction detected by nuclear radiation as well as nuclear
quadrupole interactions detected by resonance methods in the areas
of materials, biological and medical science will find this volume
indispensable. New and original scientific results along with
recent developments in instrumentation and methods will be
communicated in invited and contributed papers.
Intended as a reference handbook of quantities used in dosimetry of ionizing radiations. Fields of application are radiological protection, environmental radiation, health physics, nuclear medicine and radiotherapy, radiobiology, radiopharmacy and radiation chemistry. The book is in three parts. The first part deals with electrons, X-rays and gamma-rays. The second part contains data for heavy charged particles ranging from protons to uranium ions, and the final part is concerned with neutrons. Quantities tabulated include quality paramenters recommended by the International Commissions of Radiological Protection and of radiation quantities units and measurements.
The chapters of this book are based upon lectures presented at the NATO Advanced Study Institute on Membrane Processes in Separation and Purification (March 21 - April 2, 1993, Curia, Portugal), organized as a successor and update to a similar Institute that took place 10 years ago (p.M.Bungay, H.K. Lonsdale, M.N. de Pinho (Eds.): Synthetic Membranes: Science, Engineering and Applications, NATO ASI Series, Reidel, Dordrecht, 1986). The decade between the two NATO Institutes witnesses the transition from individually researched membrane processes to an applied and established membrane separation technology, as is reflected by the contents of the corresponding proceeding volumes. By and large, the first volume presents itself as a textbook on membrane processes, still valid, while the present volume focuses on areas of separation need as amenable to membrane processing: Biotechnology and Environmental Technology. Accordingly, the contributions to this volume are grouped into "Membranes in Biotechnology" (11 papers), "Membranes in Environmental Technology" (6 papers), and "New Concepts" (4 papers). This is followed by one contribution each on "Energy Requirements" and "Education," i.e., membrane processes within an academic curriculum. The book thus amounts to a state of the art of applied membrane processing and may well augment the more fundamental approach of its predecessor.
This thesis explores two distinct applications of laser spectroscopy: the study of nuclear ground state properties, and element selective radioactive ion beam production. It also presents the methods and results of an investigation into isotope shifts in the mercury isotopic chain. These Resonance Ionization Laser Ion Source (RILIS) developments are detailed, together with an RILIS ionization scheme that allowed laser ionized ion beams of chromium, germanium, radium and tellurium to be generated at the Isotope Mass Separator On-Line (ISOLDE) facility. A combination of laser spectroscopy with decay spectroscopy and mass spectrometry unambiguously demonstrated a cessation of the extreme shape staggering first observed in the 1970s and revealed the characteristic kink at the crossing of the N=126 shell closure. A series of RILIS developments were required to facilitate this experiment, including mercury "ionization scheme" development and the coupling of the RILIS with an arc discharge ion source. Laser spectroscopy has since become a powerful tool for nuclear physics and the Resonance Ionization Laser Ion Source (RILIS), of the ISOLDE facility at CERN, is a prime example. Highlighting important advances in this field, the thesis offers a unique and revealing resource.
This open access book is only an introduction to show that radiation and radioisotopes (RI) are premier tools to study living plant physiology which leads to new findings. Who had ever imagined that we could see water in a plant? Who had ever imagined that we could see ions moving toward roots in solution? Who had ever imagined that we could see invisible gas (CO2) fixation and movement in a plant? These studies demonstrated for the first time that water, ions and gas can be visualized in living plants, which could be hardly seen by anyone before. This publication summarizes the results obtained by Nakanishi's lab in The Univ. of Tokyo, based on her original concept and her original tools or systems. It is useful for professional scientists, plant physiologist, and those studying plant imaging. The chapters demonstrates the innovative imaging work of the author, using radioactive tracers and neutron beam to follow the absorption and transport manner of water as well as major, minor, and trace elements in plants. Through these studies the author developed a real-time macroscopic and microscopic imaging system able to apply commercially available gamma- and beta-ray emitters. The real-time movement of the elements is now possible by using 14C, 18F, 22Na, 28Mg, 32P, 33P, 35S, 42K, 45Ca, 48V, 54Mn, 55Fe, 59Fe, 65Zn, 86Rb, 109Cd, and 137Cs. The imaging methods was applied to study the effect of 137Cs following 3/11 Fukushima Daiichi nuclear plant accident, which has revealed the movements of radiocesium in the contaminated sites.
This book is a rigorous but concise macroscopic description of the interaction between electromagnetic radiation and structures containing graphene sheets (two-dimensional structures). It presents canonical problems with translational invariant geometries, in which the solution of the original vectorial problem can be reduced to the treatment of two scalar problems, corresponding to two basic polarization modes. The book includes computational problems and makes use of the Python programming language to make numerical calculations accessible to any science student. Many figures within are accompanied by Python scripts.
This book provides an overview of passive and interactive analytical techniques for nuclear materials. The book aims to update readers on new techniques available and provide an introduction for those who are new to the topic or are looking to move into actinides and nuclear materials science. The characterization of actinide species and radioactive materials is vital for understanding how these elements and radioactive isotopes are formed and behave and how these materials can be improved. The analysis of the actinides or radioactive materials goes beyond spent fuel science to the applicable complete fuel cycle and including analysis of reactor materials.
Computational Photochemistry, Volume 16 provides an overview of
general strategies currently used to investigate photochemical
processes. Whilst contributing to establishing a branch of
computational chemistry that deals with the properties and
reactivity of photoexcited molecules, the book also provides
insight into the conceptual and methodological research lines in
computational photochemistry. Packed with examples of applications
of modelling of basic photochemical reactions and the
computer-aided development of novel materials in the field of
photodegradation (paints), photoprotection (sunscreens), color
regulation (photochromic devices) and fluorescent probes, this book
is particularly useful to anyone interested in the effect of light
on molecules and materials.
The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This revised and updated 4th edition explores the challenges that faced the scientists and engineers of the Manhattan Project. It gives a clear introduction to fission weapons at the level of an upper-year undergraduate physics student by examining the details of nuclear reactions, their energy release, analytic and numerical models of the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design. An extensive list of references and a number of exercises for self-study are included. Revisions to this fourth edition include many upgrades and new sections. Improvements are made to, among other things, the analysis of the physics of the fission barrier, the time-dependent simulation of the explosion of a nuclear weapon, and the discussion of tamped bomb cores. New sections cover, for example, composite bomb cores, approximate methods for various of the calculations presented, and the physics of the polonium-beryllium "neutron initiators" used to trigger the bombs. The author delivers in this book an unparalleled, clear and comprehensive treatment of the physics behind the Manhattan project.
This PhD sought to determine the mechanisms for the reactor explosions by mapping, collecting and analysing samples from across the area of Japan that received radioactive fallout from the explosions. In doing this, the author conducted significant fieldwork in the restricted-access fallout zone using ground and novel UAV-based mapping of radiation to identify hot-spot areas for sample collecting but also using these tools to verify the efficacy of the clean-up operations ongoing in the prefecture. Such fieldwork was both technically pioneering for its use of UAVs (drones) but also selfless in terms of bravely entering a nuclear danger area to collect samples for the greater benefit of the scientific community.
Radicals play a major role as intermediates in many chemical reactions. They contribute to transformations in the atmosphere, living organisms, chemical synthesis, combustion and detonation amongst others. This comprehensive and conclusive book discusses all these aspects. N-centered Radicals deals with NOx and NCO, relatively stable radicals whose presence in the atmosphere influences the metabolism of living organisms. Also included are NHx, NCH and N3, important in radical studies, chemical synthesis, detonation and metabolism. Until now there has been no single volume bringing together all aspects of N-centered radical chemistry, from formation, to their chemistry in aqueous environments, biological systems and the atmosphere. N-centered Radicals is essential reading for researchers in organic, physical and environmental chemistry, biology and all others examining the effects of N-centered radicals.
This thesis presents two significant results in the field of precision measurements in low-energy nuclear physics. Firstly, it presents a precise half-life determination of 11C, leading to the most precise ft-value for a beta decay transition between mirror nuclides, an important advance in the testing of the electroweak sector of the Standard Model. Secondly, it describes a high-precision mass measurement of 56Cu, a critical nucleus for determining the path of the astrophysical rapid-proton capture process, performed by the author using the LEBIT Penning trap at the National Superconducting Cyclotron Laboratory. This new measurement resolves discrepancies in previously-reported calculated mass excesses. In addition, the thesis also presents the construction and testing of a radio-frequency quadrupole cooler and buncher that will be part of the future N = 126 factory at Argonne National Laboratory aimed at producing nuclei of interest for the astrophysical rapid-neutron capture process for the first time.
This book offers a comprehensive survey of basic elements of nuclear dynamics at low energies and discusses similarities to mesoscopic systems. It addresses systems with finite excitations of their internal degrees of freedom, so that their collective motion exhibits features typical for transport processes in small and isolated systems. The importance of quantum aspects is examined with respect to both the microscopic damping mechanism and the nature of the transport equations. The latter must account for the fact that the collective motion is self-sustained. This implies highly nonlinear couplings between internal and collective degrees of freedom --- different to assumptions made in treatments known in the literature. A critical discussion of the use of thermal concepts is presented. The book can be considered self-contained. It presents existing models, theories and theoretical tools, both from nuclear physics and other fields, which are relevant to an understanding of the observed physical phenomena.
This book provides detailed information on the electrochemistry of technetium compounds. After a brief physico-chemical characterization of this element, it presents the comparative chemistry of technetium, manganese and rhenium. Particular attention is paid to the stability, disproportionation, comproportionation, hydrolysis and polymerization reactions of technetium ions and their influence on the observed redox systems. The electrochemical properties of both inorganic as well as organic technetium species in aqueous and non-aqueous solutions are also discussed. The respective chapters cover the whole spectrum of topics related to the application of technetium in nuclear medicine, electrochemistry of technetium in spent nuclear fuel (including corrosion properties of technetium alloys), and detecting trace amounts of technetium with the aid of electrochemical methods. Providing readers with information not easily obtained in any other single source, the book will appeal to researchers working in nuclear chemistry, nuclear medicine or the nuclear industry.
These peer-reviewed NIC XV conference proceedings present the latest major advances in nuclear physics, astrophysics, astronomy, cosmochemistry and neutrino physics, which provide the necessary framework for a microscopic understanding of astrophysical processes. The book also discusses future directions and perspectives in the various fields of nuclear astrophysics research. In addition, it also includes a limited number of section of more general interest on double beta decay and dark matter.
The development of atomic bombs under the auspices of the U.S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level "Modern Physics" course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the legacy of the Project as reflected in the current world stockpiles of nuclear weapons. This second edition contains important revisions and additions, including a new chapter on the German atomic bomb program and new sections on British and Canadian contributions to the Manhattan project and on feed materials. Several other sections have been expanded; reader feedback has been helpful in introducing minor corrections and improved explanations; and, last but not least, the second edition includes a detailed index. |
You may like...
Reconceptualising the Rule of Law in…
Photini Pazartzis, Maria Gavouneli
Hardcover
R3,212
Discovery Miles 32 120
Microwave Active Circuit Analysis and…
Clive Poole, Izzat Darwazeh
Hardcover
Management of Cyber Physical Objects in…
Antonio Guerrieri, Valeria Loscri, …
Hardcover
|