![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Nuclear chemistry, photochemistry & radiation
This book presents coherent and systematic coverage of the broad and dynamic field of free atom and cluster atom chemistry. The text provides a comprehensive overview of the current literature and describes the mostimportant experimental techniques developed since 1980 including bimetallic clusters/catalysts, carbon clusters (fullerenes) and trapped single atoms. Metal atoms, clusters, and particles are covered in sequence with the Periodic Table.
State-of-the-art survey by leading experts in the field. Major foci are superheavy nuclei and neutron-rich exotic nuclei. In addition new developments in nuclear fission and nuclear cluster decay are shown. Finally developments in relativistic heavy ion collisions and the physics of supercritical fields are detailed.
The present work focuses on the development of intensified small-scale extraction units for spent nuclear fuel reprocessing using advanced process engineering with combined experimental and modelling methodologies. It discusses a number of novel elements, such as the intensification of spent fuel reprocessing and the use of ionic liquids as green alternatives to organic solvents. The use of ionic liquids in two-phase liquid-liquid separation is new to the Multiphase Flow community, and has proved to be challenging, especially in small channels, because of the surface and interfacial properties involved, which are very different to those of common organic solvents. Numerical studies have been also performed to couple the hydrodynamics at small scale with the mass transfer. The numerical results, taken together with scale-up studies, are used to evaluate the applicability of the small-scale units in reprocessing large volumes of nuclear waste.
While books on semiconductor TiO2 photocatalysis are legion, nanostructured controlled photocatalysts are attractive beyond standard semiconductors, and this book is devoted to the many novel uses of advanced TiO2 and MOF-based photocatalysts. Details on synthesis, characterization, and reaction applications of nanostructured photocatalysts are summarized. Other new materials discussed in this book are Bi- W- oxides, metal complexes, and unique porous materials. This book contains methods of preparation and characterization of unique nanostructured photocatalysts, and details about their catalytic action. Contributors to this volume are leading Asian researchers in Photocatalysis. It will appeal to researchers wishing to know how to design new types of photocatalysts with controlled nanostructures.
This book reflects on the significant and highly original scientific contributions of Hans Primas. A professor of chemistry at ETH Zurich from 1962 to 1995, Primas continued his research activities until his death in 2014. Over these 50 years and more, he worked on the foundations of nuclear magnetic resonance spectroscopy, contributed to a number of significant issues in theoretical chemistry, helped to clarify central topics in quantum theory and the philosophy of physics, suggested innovative ways of addressing interlevel relations in the philosophy of science, and introduced cutting-edge approaches in the flourishing young field of scientific studies of consciousness. His work in these areas of research and its continuing impact is described by noted experts, colleagues, and collaborators of Primas. All authors contextualize their contributions to facilitate the mutual dialog between these fields.
Reviewing photo-induced processes that have relevance to a wide-ranging number of academic and commericial disciplines and interests covering chemistry, physics, biology and technology, this series is essential reading for anyone wishing to keep abreast of the current literature. Now in its 41st volume, and with contributions from across the globe, this series continues to present an accessible digest of current opinion and research in all aspects of photochemistry. More than 100 years have passed since Ciamician first talked of solar energy conversion and photoresponsive materials and these topics are among those reviewed in this Specialist Periodical Report. Other chapters examine the potential for photo-click chemistry, the photophysics of transition-metal complexes and excited state dynamics in conjugated polymers. This specialist periodical report presents critical and comprehensive reviews of the last 12 months of the literature and is an essential resource for anyone working at the cutting edge of photochemistry.
This anthological description of the history and applications of photochemistry provides photochemistry practitioners with complementary information about the field, currently not covered in existing textbooks and handbooks. The first part focuses on the historical development of the field, including light-matter interaction, the discovery of photochemical reactions and the development of modern photochemical mechanisms. This section provides useful background to the second part which outlines applications of photochemistry in the present day, such as in synthesis, green chemistry, diagnostics, medicine and nanotechnology. Furthermore, the author provides an outlook on promising areas for future developments. The broad scope of "Photochemistry: Past, Present and Future" is also of interest to the wider chemical audience and it makes a pleasant read while not compromising on scientific rigor.
Reviewing photo-induced processes that have relevance to the wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology, this series is essential reading. Each volume comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophone type, polymer photochemistry, and photochemical aspects of solar energy conversion.
This book reflects the heights of knowledge of ultrafast chemical
processes attained in these early years of the 21st century: the
latest research in femtosecond and picosecond molecular processes
in Chemistry and Biology, carried out around the world, is
described here in more than 110 articles. The results were
presented and discussed at the VIth International Conference on
Femtochemistry, in Paris, France, from July 6 to July 10, 2003. The
articles published here were reviewed by referees selected from
specialists in the Femtochemistry community, guaranteeing a
collective responsability for the quality of the research reported
in the next 564 pages. Femtochemistry is an ever-growing field,
where new research areas are constantly opening up, and one which
both stimulates and accompanies the development of ultrafast
technologies.
In the first volume, Professors Poole and Farach provided one of the first definitive reference tools for this field. In this second volume, the authors present a comprehensive source for subfields of ESR not covered in the first volume, including: * Sensitivity * Field Swept versus Frequency Swept Spectra * Resonators * Line Shapes * Electron Spin Echo Envelope Modulation * Hamiltonian types and symmetries * ESR Imaging * High Magnetic Fields and High Frequencies. Written by recognized experts in the field, and intended for students and researchers, these handbooks bring together wide-ranging data from diverse disciplines within ESR, and then integrate it into a comprehesive and definitive resource. An invaluable reference for all those involved in ESR research.
"Unravelling the Mystery of the Atomic Nucleus" is a history of atomic and nuclear physics. It begins in 1896 with the discovery of radioactivity, which leads to the discovery of the nucleus at the center of the atom. It follows the experimental discoveries and the theoretical developments up to the end of the Fifties. Unlike previous books regarding on history of nuclear physics, this book methodically describes how advances in technology enabled physicists to probe the physical properties of nuclei as well as how the physical laws which govern these microscopic systems were progressively discovered. The reader will gain a clear understanding of how theory is inextricably intertwined with the progress of technology. "Unravelling the Mystery of the Atomic Nucleus" will be of interest to physicists and to historians of physics, as well as those interested development of science.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 37 covers literature published from July 2004 to June 2007. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
The second edition of "The Chemistry of the Superheavy Elements" provides a complete coverage of the chemistry of a series of elements beginning with atomic number 104 - the transactinides or superheavy elements - including their nuclear properties and production in nuclear reactions at heavy-ion accelerators. The contributors to this work include many renowned scientists who, during the last decades, have made vast contributions towards understanding the physics and chemistry of these elusive elements, both experimentally and theoretically. The main emphasis here is on demonstrating the fascinating studies involved in probing the architecture of the Periodic Table at its uppermost end, where relativistic effects drastically influence chemical properties. All known chemical properties of these elements are described together with the experimental techniques applied to study these short-lived man-made elements one atom-at-a-time. The status of theoretical chemistry and of empirical models is presented as well as aspects of nuclear physics. In addition, one chapter outlines the meanderings in this field from a historical perspective and the search for superheavy elements in Nature.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 36 covers literature published from July 2003 to June 2004.
This book is a complete update of the classic 1981 FAST BREEDER REACTORS textbook authored by Alan E. Waltar and Albert B. Reynolds, which, along with the Russian translation, served as a major reference book for fast reactors systems. Major updates include transmutation physics (a key technology to substantially ameliorate issues associated with the storage of high-level nuclear waste ), advances in fuels and materials technology(including metal fuels and cladding materials capable of high-temperature and high burnup), and new approaches to reactor safety (including passive safety technology), New chapters on gas-cooled and lead-cooled fast spectrum reactors are also included. Key international experts contributing to the text include Chaim Braun, (Stanford University) Ronald Omberg, (Pacific Northwest National Laboratory, Massimo Salvatores (CEA, France), Baldev Raj, (Indira Gandhi Center for Atomic Research, India), John Sackett (Argonne National Laboratory), Kevan Weaver, (TerraPower Corporation), James Seinicki(Argonne National Laboratory). Russell Stachowski (General Electric), Toshikazu Takeda (University of Fukui, Japan), and Yoshitaka Chikazawa (Japan Atomic Energy Agency). "
Studies in Natural Products Chemistry, Volume 10: Stereoselective Synthesis (Part F) is a collection of articles about studies on important organic molecules. The book covers studies such as that on the synthesis of cembranes as well as its natural occurrence and bioactivity; the stereoselective synthesis of Vitamin D; the synthesis of isoquinolinequinone antibiotics; and the nucleophilic addition chemistry of polyunsaturated carbonyl compounds. Also covered in the book are subjects such as developments in the synthesis of medium ring ethers; the biological properties, chemistry, and synthesis of didemnins; and natural products synthesis based on novel ring transformation. The text is recommended for organic chemists who would like to know more about the progresses in the study of important organic molecules and their implications in different fields.
This thesis contains new research in both experimental and theoretical particle physics, making important contributions in each. Two analyses of collision data from the ATLAS experiment at the LHC are presented, as well as two phenomenological studies of heavy coloured resonances that could be produced at the LHC. The first data analysis was the measurement of top quark-antiquark production with a veto on additional jet activity. As the first detector-corrected measurement of jet activity in top-antitop events it played an important role in constraining the theoretical modelling, and ultimately reduced these uncertainties for ATLAS's other top-quark measurements by a factor of two. The second data analysis was the measurement of Z+2jet production and the observation of the electroweak vector boson fusion (VBF) component. As the first observation of VBF at a hadron collider, this measurement demonstrated new techniques to reliably extract VBF processes and paved the way for future VBF Higgs measurements. The first phenomenological study developed a new technique for identifying the colour of heavy resonances produced in proton-proton collisions. As a by-product of this study an unexpected and previously unnoticed correlation was discovered between the probability of correctly identifying a high-energy top and the colour structure of the event it was produced in. The second phenomenological study explored this relationship in more detail, and could have important consequences for the identification of new particles that decay to top quarks.
The purpose of this volume is to trace the development of the
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. |
You may like...
Yackety Yack [serial]; 1983
University of North Carolina (1793-19
Hardcover
R984
Discovery Miles 9 840
|