![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
This book provides an up-to-date introduction to the field of functional thin films and materials, encompassing newly developed technologies and fundamental new concepts. The focus is on the critical areas of novel thin films such as sol gel synthesis of membrane, ferroelectric thin films and devices, functional nanostructured thin films, micromechanical analysis of fiber-reinforced composites, and novel applications. An important aspect of the book lies in its wide coverage of practical applications. It introduces not only the cutting-edge technologies in modern industry, but also unique applications in many rapidly advancing fields. This book is written for a wide readership including university students and researchers from diverse backgrounds such as physics, materials science, engineering and chemistry. Both undergraduate and graduate students will find it a valuable reference book on key topics related to solid state and materials science.
This is an introduction to noise, describing fundamental noise sources and basic circuit analysis, discussing characterization of low-frequency noise and offering practical advice that bridges concepts of noise theory and modelling, characterization, CMOS technology and circuits. The text offers the latest research, reviewing the most recent publications and conference presentations. The book concludes with an introduction to noise in analog/RF circuits and describes how low-frequency noise can affect these circuits.
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is
concerned with the fundamental physics of semiconductors, showing
how the electronic features and the lattice dynamics change
drastically when systems vary from bulk to a low-dimensional
structure and further to a nanometer size. Throughout this section
there is an emphasis on the full understanding of the underlying
physics. The second section deals largely with the transformation
of the conceptual framework of solid state physics into devices and
systems which require the growth of extremely high purity, nearly
defect-free bulk and epitaxial materials. The last section is
devoted to exploitation of the knowledge described in the previous
sections to highlight the spectrum of devices we see all around
us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts
The 2001 Dutch Sensor Conference held on 14 -15 May 2001, at the University of Twente in Enschede, The Netherlands, is the fourth in a series ofmeetings. The conference is initiated by the Dutch Technology Foundation (STW) in order to stimulate the industrial application ofsensor research. This MESA Monograph contains a collection oflatest research and development from all major Dutch centers ofsensor research and aspect ofsensor commercialization. Thus it provides an excellent overview ofthe state ofthe art ofDutch Sensor Technology in the new millennium. I should like to acknowledge the work ofthe program committee, the local organizing committee and, ofcourse, the contributors to this volume. All ofthem made the conference a success. Prof. Dr. Miko Elwenspoek Conference Chairman Program Committee: M. Elwenspoek (Chairman) (MESA+) A.van den Berg (MESA+) PJ. French (TV Delft) P.V. Lambeck (MESA+) H. Leeuwis (3T) J.c. Lotters (Bronkhorst) HAC. Tilmans (IMEC) Contents MEASUREMENT SYSTEM FOR BIOCHEMICAL ANALYSIS BASED 1 ON CAPILLARY ELECTROPHORESIS AND MICROSCALE CONDUCTIVITY DETECTION F. Laugere, A. Berthold, R.M Guijt, E. Baltussen, J. Bastemeijer, P.M Sarro, MJ. Vellekoop ELECTRO-OSMOTIC FLOW CONTROL IN MICROFLUIDICS 7 SYSTEMS R.E. Oosterbroek, MH. Goedbloed, A. Trautmann, N.J. van der Veen, S Schlautmann, 1.W Berenschot, A. van den Berg FLOW SENSING USING THE TEMPERATURE DISTRIBUTION 13 ALONG A HEATED MICROBEAM J.J. van Baar, RJ Wiegerink, GJM Krijnen, T.SJ. Lammerink, M.
GaAs on Si: Device Applications.- Substrate Considerations.- Majority-Carrier Devices.- Minority-Carrier Devices.- Conclusions.- Ion Beam Synthesis in Silicon.- The Ion Implantation Process.- Buried SiO2 Layers in Si.- Buried Monocrystalline CoSi2 Layers in Si.- Conclusions.- Ion Beam Processing of Chemical Vapor Deposited Silicon Layers.- Ion Beam Effects.- Epitaxy of Deposited Layers.- Polycrystal Formation.- Technology and Devices for Silicon Based Three-Dimensional Circuits.- 3D-Technology.- Device Characteristics.- Features of 3D-Circuits.- Demonstrators.- Conclusions.- Integrated Fabrication of Micromechanical Structures on Silicon.- Mechanical Properties of Silicon.- Thermal Properties.- Fabrication Techniques.- Etching.- Anisotropic Etching.- Boron Doped Etch Stop.- Electrochemical Etch Stop.- Embedded Layers.- Surface Microstructures.- Bonding of Layers.- Electrostatic Bonding.- Oxide Bonding.- Bonding to Metals.- Conclusion.- Micromachining of Silicon for Sensors.- Physical Properties of Silicon.- Transduction Techniques.- Fabrication Techniques.- Pressure Sensors.- Accelerometers.- Microresonator Sensors.- Optical Microresonator Sensors.- Conclusions.- Micromachining of Silicon for Sensors.- Hybrid or Monolithic Approach for optoelectronics: That is the question.- About the Hybrid Approach Material Competitors.- Silicon Based Technologies developed at LETI.- Planar and Channel waveguide Properties of IOS Technologies.- Field of Activities.- Integrated Optical Spectrum Analyser (IOSA).- Integrated Optical Sensors.- Optical Communication Applications.- Optical Memories.- Conclusion.- Principles and Implementation of Artificial Neural Networks.- Binary Networks.- Analog Networks.- Miscellaneous Networks.- Future VLSI Networks.- Conclusions.- List of Participants.
The focus of this book is on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition. It will benefit those working in any discipline that requires an understanding of thin film growth processes.
This book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced. The 3rd edition has been thoroughly updated, with a new chapter on critical state model. The mechanism of irreversible properties is discussed in detail. The author provides calculations of pinning loss by the equation of motion of flux lines in the pinning potential and hysteresis loss. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. This book aims for graduate students and researchers studying superconductivity as well as engineers working in electric utility industry.
The Workshop Heterostructure Epitaxy and Devices HEAD'97 was held from October 12 to 16, 1997 at Smolenice Castle, the House of Scientists of the Slovak Academy of Sciences and was co-organized by the Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava and the Institute of Thin Film and Ion Technology, Research Centre, liilich. It was the third in a series of workshops devoted to topics related to heterostructure epitaxy and devices and the second included into the category of Advanced Research Workshops (ARW) under sponsorship of the NATO. More than 70 participants from 15 countries attended (Austria, Belarus, Belgium, Czech Republic, Finland, Germany, Greece, Hungary, Italy, Poland, Russia, Slovakia, Ukraine, the United Kingdom and the USA). Novel microelectronic and optoelectronic devices are based on semiconductor heterostructures. The goal of the ARW HEAD'97 was to discuss various questions related to the use of new materials (e.g. compound semiconductors based on high band-gap nitrides and low band-gap antimonides) and new procedures (low-temperature epitaxial growth), as well as new principles (nanostructures, quantum wires and dots, etc.) aimed at realizing high-performance heterostructure based electronic devices. Almost 70 papers (invited and contributed oral presentations as well as posters) were presented at the ARW HEAD'97 and the main part of them is included into these Proceedings.
This thesis sheds light on the unique dynamics of optoelectronic devices based on semiconductor quantum-dots. The complex scattering processes involved in filling the optically active quantum-dot states and the presence of charge-carrier nonequilibrium conditions are identified as sources for the distinct dynamical behavior of quantum-dot based devices. Comprehensive theoretical models, which allow for an accurate description of such devices, are presented and applied to recent experimental observations. The low sensitivity of quantum-dot lasers to optical perturbations is directly attributed to their unique charge-carrier dynamics and amplitude-phase-coupling, which is found not to be accurately described by conventional approaches. The potential of quantum-dot semiconductor optical amplifiers for novel applications such as simultaneous multi-state amplification, ultra-wide wavelength conversion, and coherent pulse shaping is investigated. The scattering mechanisms and the unique electronic structure of semiconductor quantum-dots are found to make such devices prime candidates for the implementation of next-generation optoelectronic applications, which could significantly simplify optical telecommunication networks and open up novel high-speed data transmission schemes.
This book presents experimental studies on emergent transport and magneto-optical properties in three-dimensional topological insulators with two-dimensional Dirac fermions on their surfaces. Designing magnetic heterostructures utilizing a cutting-edge growth technique (molecular beam epitaxy) stabilizes and manifests new quantization phenomena, as confirmed by low-temperature electrical transport and time-domain terahertz magneto-optical measurements. Starting with a review of the theoretical background and recent experimental advances in topological insulators in terms of a novel magneto-electric coupling, the author subsequently explores their magnetic quantum properties and reveals topological phase transitions between quantum anomalous Hall insulator and trivial insulator phases; a new topological phase (the axion insulator); and a half-integer quantum Hall state associated with the quantum parity anomaly. Furthermore, the author shows how these quantum phases can be significantly stabilized via magnetic modulation doping and proximity coupling with a normal ferromagnetic insulator. These findings provide a basis for future technologies such as ultra-low energy consumption electronic devices and fault-tolerant topological quantum computers.
This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book's main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.
This book highlights state-of-the-art in III-nitrides-based light-emitting diodes (LEDs). Motivated by the application prospects in lighting, high-resolution display, and health & medicine, the book systematically introduces the physical fundamentals, epitaxial growth, and device fabrications of III-nitride-based LEDs. Important topics including the structures of chips, device reliability and measurements and the advances in mini and micro LEDs are also discussed. The book is completed with a decade of research experience of the author's team in the design and fabrication of III-nitrides-based LEDs, presenting the novel achievements in the stress control of the large mismatch heterostructures, defect formation and inhibition mechanism of the heteroepitaxial growth, LED epitaxial technologies, and the fabrication of high-efficient flip-chip LEDs. The book comprises of a valuable reference source for researchers and professionals engaged in the research and development of III-nitrides-based LEDs.
This book describes the physical basis of microwave electronics and related topics, such as microwave vacuum and microwave semiconductor devices. It comprehensively discusses the main types of microwave vacuum and microwave semiconductor devices, their principles of action, theory, parameters and characteristics, as well as ways of increasing the frequency limit of various devices up to the terahertz frequency band. Further, it applies a unified approach to describe charged particle interaction within electromagnetic fields and the motion laws of charged particles in various media. The book is intended as a manual for researchers and engineers, as well as advanced undergraduate and graduate students.
This book presents a sequential representation of the electrodynamics of conducting media with dispersion. In addition to the general electrodynamic formalism, specific media such as classical nondegenerate plasma, degenerate metal plasma, magnetoactive anisotropic plasma, atomic hydrogen gas, semiconductors, and molecular crystals are considered. The book draws on such classics as Electrodynamics of plasma and plasma-like media (Silin and Rukhadze) and Principles of Plasma Electrodynamics (Alexandrov, Bogdankevich, and Rukhadze), yet its outlook is thoroughly modern-both in content and presentation, including both classical and quantum approaches. It explores such recent topics as surface waves on thin layers of plasma and non-dispersive media, the permittivity of a monatomic gas with spatial dispersion, and current-driven instabilities in plasma, among many others. Each chapter is equipped with a large number of problems with solutions that have academic and practical importance. This book will appeal to graduate students as well as researchers and other professionals due to its straight-forward yet thorough treatment of electrodynamics in conducting dispersive media.
This book gives a survey of the current state of the art of a special class of nitrides semiconductors, Wurtzite Nitride and Oxide Semiconductors. It includes properties, growth and applications. Research in the area of nitrides semiconductors is still booming although some basic materials sciences issues were solved already about 20 years ago. With the advent of modern technologies and the successful growth of nitride substrates, these materials currently experience a second birth. Advanced new applications like light-emitters, including UV operating LEDs, normally on and normally off high frequency operating transistors are expected. With progress in clean room technology, advanced photonic and quantum optic applications are envisioned in a close future. This area of research is fascinating for researchers and students in materials science, electrical engineering, chemistry, electronics, physics and biophysics. This book aims to be the ad-hoc instrument to this active field of research.
This book systematically introduces the most important aspects of organic semiconductor heterojunctions, including the basic concepts and electrical properties. It comprehensively discusses the application of organic semiconductor heterojunctions as charge injectors and charge generation layers in organic light-emitting diodes (OLEDs). Semiconductor heterojunctions are the basis for constructing high-performance optoelectronic devices. In recent decades, organic semiconductors have been increasingly used to fabricate heterojunction devices, especially in OLEDs, and the subject has attracted a great deal of attention and evoked many new phenomena and interpretations in the field. This important application is based on the low dielectric constant of organic semiconductors and the weak non-covalent electronic interactions between them, which means that they easily form accumulation heterojunctions. As we know, the accumulation-type space charge region is highly conductive, which is an important property for highly efficient charge generation in their application as charge injector and charge generation layer in OLEDs. This book serves as a valuable reference for researchers and as a textbook for graduate students focusing on the study and development of OLED for display and lighting.
Rapid thermal and integrated processing is an emerging single-wafer technology in ULSI semiconductor manufacturing, electrical engineering, applied physics and materials science. Here, the physics and engineering of this technology are discussed at the graduate level. Three interrelated areas are covered. First, the thermophysics of photon-induced annealing of semiconductor and related materials, including fundamental pyrometry and emissivity issues, the modelling of reactor designs and processes, and their relation to temperature uniformity. Second, process integration, treating the advances in basic equipment design, scale-up, integrated cluster-tool equipment, including wafer cleaning and integrated processing. Third, the deposition and processing of thin epitaxial, dielectric and metal films, covering selective deposition and epitaxy, integrated processing of layer stacks, and new areas of potential application, such as the processing of III-V semiconductor structures and thin- film head processing for high-density magnetic data storage.
This book deals with the study of superconductivity in systems with coexisting wide and narrow bands. It has been previously suggested that superconductivity can be enhanced in systems with coexisting wide and narrow bands when the Fermi level is near the narrow band edge. In this book, the authors study two problems concerning this mechanism in order to: (a) provide a systematic understanding of the role of strong electron correlation effects, and (b) propose a realistic candidate material which meets the ideal criteria for high-Tc superconductivity. Regarding the role of strong correlation effects, the FLEX+DMFT method is adopted. Based on systematic calculations, the pairing mechanism is found to be indeed valid even when the strong correlation effect is considered within the formalism. In the second half of the book, the authors propose a feasible candidate material by introducing the concept of the "hidden ladder" electronic structure, arising from the combination of the bilayer lattice structure and the anisotropic orbitals of the electrons. As such, the book contributes a valuable theoretical guiding principle for seeking unknown high-Tc superconductors.
This thesis presents and discusses recent optical low-temperature experiments on disordered NbN, granular Al thin-films, and the heavy-fermion compound CeCoIn5, offering a unified picture of quantum-critical superconductivity. It provides a concise introduction to the respective theoretical models employed to interpret the experimental results, and guides readers through in-depth calculations supplemented with supportive figures in order to both retrace the interpretations and span the bridge between experiment and state-of-the art theory.
This book demonstrates how the new phenomena in the nanometer scale serve as the basis for the invention and development of novel nanoelectronic devices and how they are used for engineering nanostructures and metamaterials with unusual properties. It discusses topics such as superconducting spin-valve effect and thermal spin transport, which are important for developing spintronics; fabrication of nanostructures from antagonistic materials like ferromagnets and superconductors, which lead to a novel non-conventional FFLO-superconducting state; calculations of functional nanostructures with an exotic triplet superconductivity, which are the basis for novel nanoelectronic devices, such as superconducting spin valve, thin-film superconducting quantum interference devices (SQUIDs) and memory-elements (MRAM). Starting with theoretical chapters about triplet superconductivity, the book then introduces new ideas and approaches in the fundamentals of superconducting electronics. It presents various quantum devices based on the new theoretical approaches, demonstrating the enormous potential of the electronics of 21st century - spintronics. The book is useful for a broad audience, including researchers, engineers, PhD graduates, students and others wanting to gain insights into the frontiers of nanoscience.
In the rapidly developing information society there is an ever-growing demand for information-supplying elements or sensors. The technology to fabricate such sensors has grown in the past few decades from a skilful activity to a mature area of scientific research and technological development. In this process, the use of silicon-based techniques has appeared to be of crucial importance, as it introduced standardized (mass) fabrication techniques, created the possibility of integrated electronics, allowed for new transduction principles, and enabled the realization of micromechanical structures for sensing or actuation. Such micromechanical structures are particularly well-suited to realize complex microsystems that improve the performance of individual sensors. Currently, a variety of sensor areas ranging from optical to magnetic and from micromechanical to (bio)chemical sensors has reached a high level of sophistication. In this MESA Monograph the proceedings of the Dutch Sensor Conference, an initiative of the Technology Foundation (STW), held at the University of Twente on March 2-3, 1998, are compiled. It comprises all the oral and poster contributions of the conference, and gives an excellent overview of the state of the art of Dutch sensor research and development. Apart from Dutch work, the contributions of two external invited experts from Switzerland are included.
This book mainly deals with SuperConducting Fault Current Limiter (SCFCL), mainly the resistive SCFCLs. It aims to further disseminate the technical knowledge of SCFCL in particular to electrical engineers. The SCFCL is a new component and tool to better design and to be used in existing and future electric grids, altering the conventional way of thinking and planning.
There is a growing demand for electronic signal processing at elevated temperatures. A number of approaches have been used to develop this capability. Silicon circuits could be developed and fabricated with an appropriate technology to cover increased temperature ranges. In a search for semiconductors with a wider energy gap to avoid leakage currents at high operating temperatures, one developed compound semiconductors such as GaAIAs on GaAs substrates. Efforts to use GaN are also useful, although difficult due to the lack of a suitable substrate material for lattice-matched epitaxial growth. Other work concerns electronic compo nent and circuit developments with SiC. Preliminary results have proved interesting. This book attempts to present the possibilities of such circuitry. Some of the solutions obtained so far are directly usable for the many applications where high environmental temperatures exist. Other concepts, particularly the more demanding ones, such as operation above 500 DegreesC, still need much more researching. This also concerns estimates of device lifetimes for con tinuous high temperature operation. This book may help the potential user of such circuitry to find a suitable solution. It should also stimulate more research groups to enter this demanding effort. And finally, it should stimulate a broad awareness of the need and the solutions for this type of electronics. That is why Part One is devoted to high temperature applications.
This book contains reviews of recent experimental and theoretical results related to nanomaterials. It focuses on novel functional materials and nanostructures in combination with silicon on insulator (SOI) devices, as well as on the physics of new devices and sensors, nanostructured materials and nano scaled device characterization. Special attention is paid to fabrication and properties of modern low-power, high-performance, miniaturized, portable sensors in a wide range of applications such as telecommunications, radiation control, biomedical instrumentation and chemical analysis. In this book, new approaches exploiting nanotechnologies (such as UTBB FD SOI, Fin FETs, nanowires, graphene or carbon nanotubes on dielectric) to pave a way between "More Moore" and "More than Moore" are considered, in order to create different kinds of sensors and devices which will consume less electrical power, be more portable and totally compatible with modern microelectronics products.
This book is a practical guide to optical, optoelectronic, and semiconductor materials and provides an overview of the topic from its fundamentals to cutting-edge processing routes to groundbreaking technologies for the most recent applications. The book details the characterization and properties of these materials. Chemical methods of synthesis are emphasized by the authors throughout the publication. Describes new materials and updates to older materials that exhibit optical, optoelectronic and semiconductor behaviors; Covers the structural and mechanical aspects of the optical, optoelectronic and semiconductor materials for meeting mechanical property and safety requirements; Includes discussion of the environmental and sustainability issues regarding optical, optoelectronic, and semiconductor materials, from processing to recycling. |
![]() ![]() You may like...
Probabilistic and Causal Inference - The…
Hector Geffner, Rina Dechter, …
Hardcover
R4,211
Discovery Miles 42 110
Fuzzy Graphs and Fuzzy Hypergraphs
John N. Mordeson, Premchand S. Nair
Hardcover
R4,124
Discovery Miles 41 240
Monster Trucks Scissors Skills coloring…
Monster Truck Publishing
Hardcover
Software Services for e-Business and…
Claude Godart, Norbert Gronau, …
Hardcover
R2,952
Discovery Miles 29 520
Hardware Based Packet Classification for…
Chad R. Meiners, Alex X. Liu, …
Hardcover
R2,947
Discovery Miles 29 470
|