Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
This book provides a comprehensive summary of the status of emerging sensor technologies and provides a framework for future advances in the field. Chemical sensors have gained in importance in the past decade for applications that include homeland security, medical and environmental monitoring and also food safety. A desirable goal is the ability to simultaneously analyze a wide variety of environmental and biological gases and liquids in the field and to be able to selectively detect a target analyte with high specificity and sensitivity. The goal is to realize real-time, portable and inexpensive chemical and biological sensors and to use these as monitors for handheld gas, environmental pollutant, exhaled breath, saliva, urine, or blood, with wireless capability.In the medical area, frequent screening can catch the early development of diseases, reduce the suffering of patients due to late diagnoses, and lower the medical cost. For example, a 96% survival rate has been predicted in breast cancer patients if the frequency of screening is every three months. This frequency cannot be achieved with current methods of mammography due to high cost to the patient and invasiveness (radiation). In the area of detection of medical biomarkers, many different methods, including enzyme-linked immunsorbent assay (ELISA), particle-based flow cytometric assays, electrochemical measurements based on impedance and capacitance, electrical measurement of microcantilever resonant frequency change, and conductance measurement of semiconductor nanostructures, gas chromatography (GC), ion chromatography, high density peptide arrays, laser scanning quantitiative analysis, chemiluminescence, selected ion flow tube (SIFT), nanomechanical cantilevers, bead-based suspension microarrays, magnetic biosensors and mass spectrometry (MS) have been employed. Depending on the sample condition, these methods may show variable results in terms of sensitivity for some applications and may not meet the requirements for a handheld biosensor.
The compendium gives a complete overview of the properties of MgB2 (Magnesium Diboride), a superconducting compound with a transition temperature of Tc = 39K, from the fundamental properties to the fabrication of multifilamentary wires and to the presentation of various applications. Written by eminent researchers in the field, this indispensable volume not only discusses superconducting properties of MgB2 compounds, but also describes known preparation methods of thin films and of bulk samples obtained under high pressure methods.A unique selling point of the book is the detailed coverage of various applications based on MgB2, starting with MRI magnets and high current cables, cooled by Helium (He) vapor. High current cables cooled by liquid hydrogen are also highlighted as an interesting alternative due to the shrinking He reserves on earth. Other pertinent subjects comprise permanent magnets, ultrafine wires for space applications and wind generator projects.
This volume provides a broad overview of the fundamental materials science of thin films that use silicon as an active substrate or passive template, with an emphasis on opportunities and challenges for practical applications in electronics and photonics. It covers three materials classes on silicon: Semiconductors such as undoped and doped Si and SiGe, SiC, GaN, and III-V arsenides and phosphides; dielectrics including silicon nitride and high-k, low-k, and electro-optically active oxides; and metals, in particular silicide alloys. The impact of film growth and integration on physical, electrical, and optical properties, and ultimately device performance, is highlighted.
This book systematically introduces physical characteristics and implementations of III-nitride wide bandgap semiconductor materials and electronic devices, with an emphasis on high-electron-mobility transistors (HEMTs). The properties of nitride semiconductors make the material very suitable for electronic devices used in microwave power amplification, high-voltage switches, and high-speed digital integrated circuits.
Semiconductor nanocrystals and metal nanoparticles are the building blocks of the next generation of electronic, optoelectronic, and photonic devices. Covering this rapidly developing and interdisciplinary field, the book examines in detail the physical properties and device applications of semiconductor nanocrystals and metal nanoparticles. It begins with a review of the synthesis and characterization of various semiconductor nanocrystals and metal nanoparticles and goes on to discuss in detail their optical, light emission, and electrical properties. It then illustrates some exciting applications of nanoelectronic devices (memristors and single-electron devices) and optoelectronic devices (UV detectors, quantum dot lasers, and solar cells), as well as other applications (gas sensors and metallic nanopastes for power electronics packaging). Focuses on a new class of materials that exhibit fascinating physical properties and have many exciting device applications. Presents an overview of synthesis strategies and characterization techniques for various semiconductor nanocrystal and metal nanoparticles. Examines in detail the optical/optoelectronic properties, light emission properties, and electrical properties of semiconductor nanocrystals and metal nanoparticles. Reviews applications in nanoelectronic devices, optoelectronic devices, and photonic devices.
This book provides a comprehensive overview of the recent development of flexible electronics. This is a fast evolving research field and tremendous progress has been made in the past decade. In this book, new material development and novel flexible device, circuit design, fabrication and characterizations will be introduced. Particularly, recent progress of nanomaterials, including carbon nanotubes, graphene, semiconductor nanowires, nanofibers, for flexible electronic applications, assembly of nanomaterials for large scale device and circuitry, flexible energy devices, such as solar cells and batteries, etc, will be introduced. And through reviewing these cutting edge research, the readers will be able to see the key advantages and challenges of flexible electronics both from material and device perspectives, as well as identify future directions of the field.
This book relates the recent developments in several key electrical engineering R&D labs, concentrating on power electronics switches and their use. The first sections deal with key power electronics technologies, MOSFETs and IGBTs, including series and parallel associations. The next section examines silicon carbide and its potentiality for power electronics applications and its present limitations. Then, a dedicated section presents the capacitors, key passive components in power electronics, followed by a modeling method allowing the stray inductances computation, necessary for the precise simulation of switching waveforms. Thermal behavior associated with power switches follows, and the last part proposes some interesting prospectives associated to Power Electronics integration.
These proceedings of the NATO-ARW "Electron transport in nanosystems" held at the "Russia" Hotel, Yalta, Ukraine from 17-21 September 2007 resulted in many discussions between various speakers. The wide range of topics discussed at the Yalta NATO meeting included the new nanodevice applications, novel materials, superconductivity and s- sors. There have been many signi?cant advances in the past 2 years and some entirely new directions of research in these ?elds are just opening up. Recent advances in nanoscience have demonstrated that fundamentally new phy- cal phenomena are found when systems are reduced in size with dimensions, comparable to the fundamental microscopic length scales of the investigated material. Late developments in nanotechnology and measurement techniques now allow experimental investigation of transport properties of nanodevices. Great interest in this research is focused on development of spintronics, molecular electronics and quantum information processing and graphene. At the workshop, important open problems concerning cuprate superconductity, mesoscopic superconductors and novel superconductors such MgB,CeCoIn 2 5 whereconsidered.Therewasmuchdiscussionofthemechanismandsymmetry of pairing for cuprate superconductorsas well as the nature of the pseudogap. In the sessiononnovelsuperconductors,the physicalproperties of MgB were 2 discussed. There were also lively debates about two-gap superconductivity in MgB .
Reflection high-energy electron diffraction (RHEED) is the analytical tool of choice for characterizing thin films during growth by molecular beam epitaxy, since it is very sensitive to surface structure and morphology. This book serves as an introduction to RHEED for beginners and describes detailed experimental and theoretical treatments for experts, explaining how to analyze RHEED patterns. For beginners the principles of electron diffraction are explained and many examples of the interpretation of RHEED patterns are described. The second part of the book contains detailed descriptions of RHEED theory. The third part applies RHEED to the determination of surface structures, gives detailed descriptions of the effects of disorder, and critically reviews the mechanisms contributing to RHEED intensity oscillations. This unified and coherent account will appeal to both graduate students and researchers in the study of molecular beam epitaxial growth.
This book is primarily designed to serve as a textbook for undergraduate students of electrical, electronics, and computer engineering, but can also be used for primer courses across other disciplines of engineering and related sciences. The book covers all the basic aspects of electronics engineering, from electronic materials to devices, and then to basic electronic circuits. The book can be used for freshman (first year) and sophomore (second year) courses in undergraduate engineering. It can also be used as a supplement or primer for more advanced courses in electronic circuit design. The book uses a simple narrative style, thus simplifying both classroom use and self study. Numerical values of dimensions of the devices, as well as of data in figures and graphs have been provided to give a real world feel to the device parameters. It includes a large number of numerical problems and solved examples, to enable students to practice. A laboratory manual is included as a supplement with the textbook material for practicals related to the coursework. The contents of this book will be useful also for students and enthusiasts interested in learning about basic electronics without the benefit of formal coursework.
This pioneering monograph solely deals with the Magneto Thermoelectric Power (MTP) in Heavily Doped (HD) Quantized Structures. The materials considered range from HD quantum confined nonlinear optical materials to HgTe/CdTe HD superlattices with graded interfaces and HD effective mass superlattices under magnetic quantization. An important concept of the measurement of the band gap in HD optoelectronic materials in the presence of external photo-excitation has been discussed in this perspective. The influences of magnetic quantization, crossed electric and quantizing fields, the intense electric field on the TPM in HD semiconductors and superlattices are also discussed. This book contains 200 open research problems which form the integral part of the text and are useful for both PhD aspirants and researchers in the various fields for which this particular series is dedicated.
Ionizing Radiation Effects in Electronics: From Memories to Imagers delivers comprehensive coverage of the effects of ionizing radiation on state-of-the-art semiconductor devices. The book also offers valuable insight into modern radiation-hardening techniques. The text begins by providing important background information on radiation effects, their underlying mechanisms, and the use of Monte Carlo techniques to simulate radiation transport and the effects of radiation on electronics. The book then: Explains the effects of radiation on digital commercial devices, including microprocessors and volatile and nonvolatile memories-static random-access memories (SRAMs), dynamic random-access memories (DRAMs), and Flash memories Examines issues like soft errors, total dose, and displacement damage, together with hardening-by-design solutions for digital circuits, field-programmable gate arrays (FPGAs), and mixed-analog circuits Explores the effects of radiation on fiber optics and imager devices such as complementary metal-oxide-semiconductor (CMOS) sensors and charge-coupled devices (CCDs) Featuring real-world examples, case studies, extensive references, and contributions from leading experts in industry and academia, Ionizing Radiation Effects in Electronics: From Memories to Imagers is suitable both for newcomers who want to become familiar with radiation effects and for radiation experts who are looking for more advanced material or to make effective use of beam time.
The theoretical understanding of transport properties of semiconductor structures on short length and short time scales, and in the nonlinear high-field regime is of particular relevance for future electronic and optoelectronic materials. In recent years great progress has been made in a variety of aspects. Theory of Transport Properties of Semiconductor Nanostructures presents a state-of-the-art overview of theoretical methods, results, and applications in the field. It contains eleven chapters which are written by leading researchers. This book starts with a tutorial introduction to the subject, then in the following five chapters a hierarchy of different approaches to transport theory is presented, descending from a macroscopic level (quasihydrodynamic simulation) via semiclassical Monte Carlo techniques and cellular automata to a full quantum transport theory covering both Green's functions and density matrix theory. In the last five chapters the formalism is applied to more specific topics which are of great current interest such as transport in mesoscopic structures, chaotic dynamics in lateral superlattices, Bloch oscillations and Wannier-Stark localization, field domain formation in superlattices, and scattering processes in low-dimensional structures. Theory of Transport Properties of Semiconductor Nanostructures is aimed at physicists, electronic engineers, materials scientists and applied mathematicians. It may be used in research, as a professional reference in microelectronics, optoelectronics, and graduate teaching. This book should be useful not only to graduate students but also to professional scientists working in the field. It attempts to present comprehensive reviewsof the most important advances, and often takes a tutorial approach.
Addresses a Growing Need for High-Power and High-Frequency Transistors Gallium Nitride (GaN): Physics, Devices, and Technology offers a balanced perspective on the state of the art in gallium nitride technology. A semiconductor commonly used in bright light-emitting diodes, GaN can serve as a great alternative to existing devices used in microelectronics. It has a wide band gap and high electron mobility that gives it special properties for applications in optoelectronic, high-power, and high-frequency devices, and because of its high off-state breakdown strength combined with excellent on-state channel conductivity, GaN is an ideal candidate for switching power transistors. Explores Recent Progress in High-Frequency GaN Technology Written by a panel of academic and industry experts from around the globe, this book reviews the advantages of GaN-based material systems suitable for high-frequency, high-power applications. It provides an overview of the semiconductor environment, outlines the fundamental device physics of GaN, and describes GaN materials and device structures that are needed for the next stage of microelectronics and optoelectronics. The book details the development of radio frequency (RF) semiconductor devices and circuits, considers the current challenges that the industry now faces, and examines future trends. In addition, the authors: Propose a design in which multiple LED stacks can be connected in a series using interband tunnel junction (TJ) interconnects Examine GaN technology while in its early stages of high-volume deployment in commercial and military products Consider the potential use of both sunlight and hydrogen as promising and prominent energy sources for this technology Introduce two unique methods, PEC oxidation and vapor cooling condensation methods, for the deposition of high-quality oxide layers A single-source reference for students and professionals, Gallium Nitride (GaN): Physics, Devices, and Technology provides an overall assessment of the semiconductor environment, discusses the potential use of GaN-based technology for RF semiconductor devices, and highlights the current and emerging applications of GaN.
Modern electronics is being transformed as device size decreases to a size where the dimensions are significantly smaller than the constituent electron's mean free path. In such systems the electron motion is strongly confined resulting in dramatic changes of behaviour compared to the bulk. This book introduces the physics and applications of transport in such mesoscopic and nanoscale electronic systems and devices. The behaviour of these novel devices is influenced by numerous effects not seen in bulk semiconductors, such as the Aharonov-Bohm Effect, disorder and localization, energy quantization, electron wave interference, spin splitting, tunnelling and the quantum hall effect to name a few. Including coverage of recent developments, and with a chapter on carbon-based nanoelectronics, this book will provide a good course text for advanced students or as a handy reference for researchers or those entering this interdisciplinary area.
This third edition has been extended considerably to incorporate more information on instrument influences on the interpretation of X-ray scattering profiles and reciprocal space maps. Another significant inclusion is on the scattering from powder samples, covering a new theoretical approach that explains features that conventional theory cannot. The new edition includes some of the latest methodologies and theoretical treatments, including the latest thinking on dynamical theory and diffuse scattering. Recent advances in detectors also present new opportunities for rapid data collection and some very different approaches in data collection techniques; the possibilities associated with these advances will be included.This edition should be of interest to those who use X-ray scattering to understand more about their samples, so that they can make a better judgment of the parameter and confidence levels in their analyses, and how the combination of instrument, sample and detection should be considered as a whole to ensure this.
The author of this unique volume, Lev P Gor'kov is internationally renowned for his seminal contribution in the fundamentals of the Theory of Superconductivity, Theory of Metals, the field of Quantum Statistical Physics, and more generally, Organic Metals and the like. Each reprints' group is preceded by the author's introductions and commentaries clarifying the formulation of a problem, summarizing the essence of the results and placing them in the context of recent developments. The author belongs to the last generation of scientists who were the direct disciples of the legendary Russian theorist Lev Landau. And Gor'kov's achievements reflect the unique style and the originality of this famous Scientific School. As with other Russian scientists of his generation, many of the pioneering papers by Lev Gor'kov have been published in the Russian journals that are hard-to-reach for modern readers, students and postdocs. Allowing readers a glimpse into the various ways that the field of condensed matter physics was evolving for more than half a century, the volume is a valuable source for historians of science.
An introduction to the physics of the photovoltaic cell. It should appeal to undergraduate physicists, graduate students and researchers who want an introduction to the subject. The text covers the ground from the fundamental principles of semiconductor physics to the simple models used to describe solar cell operation. It presents theoretical approaches to efficient solar cell design as well as the features of the main practical types of solar cell. A set of exercises and worked solutions dealing with the text are included to aid in assimilation and teaching. It should enable the reader to understand how solar cells work, to be familiar with the terms and concepts of solar cell device physics, and to formulate and solve relevant physical problems.
Doped by isovalent or heterovalent foreign impurities, II-VI semiconductor compounds enable control of optical and electronic properties, making them ideal in detectors, solar cells, and other precise device applications. Quaternary alloys allow a simultaneous adjustment of band gap and lattice constant, increasing radiant efficiency at a wide range of wavelengths. Quaternary Alloys Based on II-VI Semiconductors consolidates data pertaining to diagrams of quaternary systems based on these semiconductor compounds. The book illustrates up-to-date experimental and theoretical information about phase relations based on II-VI semiconductor systems with four components. It critically evaluates many industrially significant systems presented in two-dimensional sections for the condensed phases. The author classifies all materials according to the periodic groups of their constituent atoms and additional components in the order of their group number. Each quaternary database description contains brief information on the diagram type, possible phase transformations and physical-chemical interactions of the components, thermodynamic characteristics, and methods for equilibrium investigation and sample preparation. Most of the phase diagrams are in their original form. For those with varying published data, the text includes several versions for comparison. This book provides invaluable data for technologists and researchers involved in developing and manufacturing II-VI semiconductors at industrial and national laboratories. It is also suitable for phase relations researchers, inorganic chemists, and semiconductor physicists as well as graduate students in materials science and engineering. Check out the companion books: Ternary Alloys Based on II-VI Semiconductor Compounds and
Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.
This book gives a state-of-the-art overview by internationally recognized researchers of the architectures of breakthrough devices required for future intelligent integrated systems. The first section highlights Advanced Silicon-Based CMOS Technologies. New device and functional architectures are reviewed in chapters on Tunneling Field-Effect Transistors and 3-D monolithic Integration, which the alternative materials could possibly use in the future. The way we can augment silicon technologies is illustrated by the co-integration of new types of devices, such as molecular and resistive spintronics-based memories and smart sensors, using nanoscale features co-integrated with silicon CMOS or above it.
This is an up-to-date treatment of the analysis and design of
CMOS integrated digital logic circuits. The self-contained book
covers all of the important digital circuit design styles found in
modern CMOS chips, emphasizing solving design problems using the
various logic styles available in CMOS.
Focusing on the physical properties of diamond and sapphire, this monograph provides readers with essential details on crystal structure and growth, mechanical properties, thermal properties, optical properties, light scattering of diamond and sapphire crystals, and sapphire lasers. Various physical properties are comprehensively discussed: Mechanical properties include hardness, tensile strength, compressive strength, and Young's modulus. Thermal properties include thermal expansion, specific heat, and thermal conductivity. Optical properties of diamond and sapphire include transmission, refractive index, and absorption. Light scattering includes Raman scattering and Brillouin scattering. Sapphire lasers include chromium-doped and titanium-doped lasers. Aimed at researchers and industry professionals working in materials science, physics, electrical engineering, and related fields, this monograph is the first to concentrate solely on physical properties of these increasingly important materials.
The book provides a technical account of the basic physics of nanostructures, which are the foundation of the hardware found in all manner of computers. It will be of interest to semiconductor physicists and electronic engineers and advanced research students. Crystalline nanostructures have special properties associated with electrons and lattice vibrations and their interaction. The result of spatial confinement of electrons is indicated in the nomenclature of nanostructures: quantum wells, quantum wires, quantum dots. Confinement also has a profound effect on lattice vibrations. The documentation of the confinement of acoustic modes goes back to Lord Rayleigh's work in the late nineteenth century, but no such documentation exists for optical modes. It is only comparatively recently that any theory of the elastic properties of optical modes exists, and a comprehensive account is given in this book. A model of the lattice dynamics of the diamond lattice is given that reveals the quantitative distinction between acoustic and optical modes and the difference of connection rules that must apply at an interface. The presence of interfaces in nanostructures forces the hybridization of longitudinally and transversely polarized modes, along with, in polar material, electromagnetic modes. Hybrid acoustic and optical modes are described, with an emphasis on polar-optical phonons and their interaction with electrons. Scattering rates in single heterostructures, quantum wells and quantum wires are described and the anharmonic interaction in quantum dots discussed. A description is given of the effects of dynamic screening of hybrid polar modes and the production of hot phonons.
Magnetostatic waves (MSWs) in magnetodielectric media are fundamental for the creation of various highly efficient devices for analog information processing in the microwave range. These devices include various filters, delay lines, phase shifters, frequency converters, nonreciprocal and nonlinear devices, and others. Magnetostatic Waves in Inhomogeneous Fields examines magnetostatic waves and their distribution in non-uniformly magnetized films and structures. The propagation of magnetostatic waves in magnetodielectric environments is accompanied by numerous and very diverse physical effects, sharply distinguishing them from ordinary electromagnetic waves in isotropic media. The authors address dispersion properties and noncollinearity of phase and group velocity vectors, as well as non-reciprocal propagation. Key Features Offers mathematical tools used in the calculation of properties of magnetostatic waves Includes a current literature review of magnetostatic waves and domain structures in garnet-ferrite films Considers the issue of converting magnetostatic waves into electromagnetic ones |
You may like...
Energy Conversion Efficiency of Solar…
Takashi Kita, Yukihiro Harada, …
Hardcover
R3,276
Discovery Miles 32 760
Micro-grids - Applications, Operation…
Mahmoud Ghofrani
Hardcover
Metal Halide Perovskites: Synthesis…
Jin Zhong Zhang, Zhiguo Xia, …
Hardcover
R2,525
Discovery Miles 25 250
Solid State Electronic Devices, Global…
Ben Streetman, Sanjay Banerjee
Paperback
R2,180
Discovery Miles 21 800
|