0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (11)
  • R250 - R500 (10)
  • R500+ (1,545)
  • -
Status
Format
Author / Contributor
Publisher

Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors

3D TCAD Simulation for CMOS Nanoeletronic Devices (Paperback, Softcover reprint of the original 1st ed. 2018): Yung-Chun Wu,... 3D TCAD Simulation for CMOS Nanoeletronic Devices (Paperback, Softcover reprint of the original 1st ed. 2018)
Yung-Chun Wu, Yi-Ruei Jhan
R2,563 Discovery Miles 25 630 Ships in 10 - 15 working days

This book demonstrates how to use the Synopsys Sentaurus TCAD 2014 version for the design and simulation of 3D CMOS (complementary metal-oxide-semiconductor) semiconductor nanoelectronic devices, while also providing selected source codes (Technology Computer-Aided Design, TCAD). Instead of the built-in examples of Sentaurus TCAD 2014, the practical cases presented here, based on years of teaching and research experience, are used to interpret and analyze simulation results of the physical and electrical properties of designed 3D CMOSFET (metal-oxide-semiconductor field-effect transistor) nanoelectronic devices. The book also addresses in detail the fundamental theory of advanced semiconductor device design for the further simulation and analysis of electric and physical properties of semiconductor devices. The design and simulation technologies for nano-semiconductor devices explored here are more practical in nature and representative of the semiconductor industry, and as such can promote the development of pioneering semiconductor devices, semiconductor device physics, and more practically-oriented approaches to teaching and learning semiconductor engineering. The book can be used for graduate and senior undergraduate students alike, while also offering a reference guide for engineers and experts in the semiconductor industry. Readers are expected to have some preliminary knowledge of the field.

Fermi Surface and Quantum Critical Phenomena of High-Temperature Superconductors (Paperback, Softcover reprint of the original... Fermi Surface and Quantum Critical Phenomena of High-Temperature Superconductors (Paperback, Softcover reprint of the original 1st ed. 2017)
Carsten Matthias Putzke
R3,253 Discovery Miles 32 530 Ships in 10 - 15 working days

This thesis provides a detailed introduction to quantum oscillation measurement and analysis and offers a connection between Fermi surface properties and superconductivity in high-temperature superconductors. It also discusses the field of iron-based superconductors and tests the models for the appearance of nodes in the superconducting gap of a 111-type pnictide using quantum oscillation measurements combined with band structure calculation. The same measurements were carried out to determine the quasiparticle mass in BaFe2(As1-xPx)2, which is strongly enhanced at the expected quantum critical point. While the lower superconducting critical field shows evidence of quantum criticality, the upper superconducting critical field is not influenced by the quantum critical point. These findings contradict conventional theories, demonstrating the need for a theoretical treatment of quantum critical superconductors, which has not been addressed to date. The quest to discover similar evidence in the cuprates calls for the application of extreme conditions. As such, quantum oscillation measurements were performed under high pressure in a high magnetic field, revealing a negative correlation between quasiparticle mass and superconducting critical temperature.

Quantum Plasmonics (Paperback, Softcover reprint of the original 1st ed. 2017): Sergey I. Bozhevolnyi, Luis Martin-Moreno,... Quantum Plasmonics (Paperback, Softcover reprint of the original 1st ed. 2017)
Sergey I. Bozhevolnyi, Luis Martin-Moreno, Francisco Garcia-Vidal
R4,484 Discovery Miles 44 840 Ships in 10 - 15 working days

This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.

Endless Quests: Theory, Experiments And Applications Of Frontiers Of Superconductivity (Hardcover): Jiangdi Fan Endless Quests: Theory, Experiments And Applications Of Frontiers Of Superconductivity (Hardcover)
Jiangdi Fan
R3,227 Discovery Miles 32 270 Ships in 10 - 15 working days

The book is devoted to advancing and developing the frontiers of superconductivity; in particular, the theory of the Diagrammatic Iteration Approach (DIA), described in Chapter 1, is unique in the community of superconductivity.The application of DIA to electron correlation effects has allowed the tough issue of strongly-coupled electron systems to be solved, which is important for high-temperature superconductivity (HTS). DIA, when applied to a layered two-dimensional system, gives rise to marvelous outcomes that can explain all the anomalies in the normal state of HTS, and leads to a transition temperature that is dependent on quantities including the dielectric constant, electron band mass and spacing between layers. This then serves as a quantifiable guide on how to make ideal superconductors. Moreover, in such a scenario, the mechanisms of low- and high-temperature superconductivity can be unified on the basis of repulsive Coulomb interactions between electrons.The book contains rich first-hand information on experiments at the frontiers of superconductivity, as well as on relevant applications of such cutting-edge developments. For instance, Jiasu Wang, co-author of the chapter discussing the HTS Maglev train, is the person who completed the world's first HTS Maglev train. Thus, the draw of this book lies not only in its ability to marry theory, experiment and application, but also in its inclusion of research from prestigious experts of the field.

Quantum-Dot-Based Semiconductor Optical Amplifiers for O-Band Optical Communication (Paperback, Softcover reprint of the... Quantum-Dot-Based Semiconductor Optical Amplifiers for O-Band Optical Communication (Paperback, Softcover reprint of the original 1st ed. 2017)
Holger Schmeckebier
R3,357 Discovery Miles 33 570 Ships in 10 - 15 working days

This thesis examines the unique properties of gallium arsenide (GaAs)-based quantum-dot semiconductor optical amplifiers for optical communication networks, introducing readers to their fundamentals, basic parameters and manifold applications. The static and dynamic properties of these amplifiers are discussed extensively in comparison to conventional, non quantum-dot based amplifiers, and their unique advantages are elaborated on, such as the fast carrier dynamics and the decoupling of gain and phase dynamics. In addition to diverse amplification scenarios involving single and multiple high symbol rate amplitude and phase-coded data signals, wide-range wavelength conversion as a key functionality for optical signal processing is investigated and discussed in detail. Furthermore, two novel device concepts are developed and demonstrated that have the potential to significantly simplify network architectures, reducing the investment and maintenance costs as well as the energy consumption of future networks.

Theoretical Study on Correlation Effects in Topological Matter (Paperback, Softcover reprint of the original 1st ed. 2017):... Theoretical Study on Correlation Effects in Topological Matter (Paperback, Softcover reprint of the original 1st ed. 2017)
Hiroki Isobe
R2,789 Discovery Miles 27 890 Ships in 10 - 15 working days

This thesis elucidates electron correlation effects in topological matter whose electronic states hold nontrivial topological properties robust against small perturbations. In addition to a comprehensive introduction to topological matter, this thesis provides a new perspective on correlated topological matter. The book comprises three subjects, in which electron correlations in different forms are considered. The first focuses on Coulomb interactions for massless Dirac fermions. Using a perturbative approach, the author reveals emergent Lorentz invariance in a low-energy limit and discusses how to probe the Lorentz invariance experimentally. The second subject aims to show a principle for synthesizing topological insulators with common, light elements. The interplay between the spin-orbit interaction and electron correlation is considered, and Hund's rule and electron filling are consequently found to play a key role for a strong spin-orbit interaction important for topological insulators. The last subject is classification of topological crystalline insulators in the presence of electron correlation. Unlike non-interacting topological insulators, such two- and three-dimensional correlated insulators with mirror symmetry are demonstrated to be characterized, respectively, by the Z4 and Z8 group by using the bosonization technique and a geometrical consideration.

Semiconductor Lasers - Stability, Instability and Chaos (Paperback, Softcover reprint of the original 4th ed. 2017): Junji... Semiconductor Lasers - Stability, Instability and Chaos (Paperback, Softcover reprint of the original 4th ed. 2017)
Junji Ohtsubo
R6,983 Discovery Miles 69 830 Ships in 10 - 15 working days

This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in semiconductor lasers are discussed, but also for example the method of self-mixing interferometry in quantum-cascade lasers, which is indispensable in practical applications. Further, this edition covers chaos synchronization between two lasers and the application to secure optical communications. Another new topic is the consistency and synchronization property of many coupled semiconductor lasers in connection with the analogy of the dynamics between synaptic neurons and chaotic semiconductor lasers, which are compatible nonlinear dynamic elements. In particular, zero-lag synchronization between distant neurons plays a crucial role for information processing in the brain. Lastly, the book presents an application of the consistency and synchronization property in chaotic semiconductor lasers, namely a type of neuro-inspired information processing referred to as reservoir computing.

Quantum Dots for Quantum Information Technologies (Paperback, Softcover reprint of the original 1st ed. 2017): Peter Michler Quantum Dots for Quantum Information Technologies (Paperback, Softcover reprint of the original 1st ed. 2017)
Peter Michler
R3,559 Discovery Miles 35 590 Ships in 10 - 15 working days

This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

Photoactive Semiconductor Nanocrystal Quantum Dots - Fundamentals and Applications (Paperback, Softcover reprint of the... Photoactive Semiconductor Nanocrystal Quantum Dots - Fundamentals and Applications (Paperback, Softcover reprint of the original 1st ed. 2017)
Alberto Credi
R4,948 Discovery Miles 49 480 Ships in 10 - 15 working days

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

High-Tc Copper Oxide Superconductors and Related Novel Materials - Dedicated to Prof. K. A. Muller on the Occasion of his 90th... High-Tc Copper Oxide Superconductors and Related Novel Materials - Dedicated to Prof. K. A. Muller on the Occasion of his 90th Birthday (Paperback, Softcover reprint of the original 1st ed. 2017)
Annette Bussmann-Holder, Hugo Keller, Antonio Bianconi
R4,240 Discovery Miles 42 400 Ships in 10 - 15 working days

Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Muller's ground-breaking research on SrTiO3.

Spectroscopic Analysis of Optoelectronic Semiconductors (Paperback, Softcover reprint of the original 1st ed. 2016): Juan... Spectroscopic Analysis of Optoelectronic Semiconductors (Paperback, Softcover reprint of the original 1st ed. 2016)
Juan Jimenez, Jens W Tomm
R2,796 Discovery Miles 27 960 Ships in 10 - 15 working days

This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

Thermal Transport in Strongly Correlated Rare-Earth Intermetallic Compounds (Paperback, Softcover reprint of the original 1st... Thermal Transport in Strongly Correlated Rare-Earth Intermetallic Compounds (Paperback, Softcover reprint of the original 1st ed. 2016)
Heike Pfau
R3,138 Discovery Miles 31 380 Ships in 10 - 15 working days

This thesis explores thermal transport in selected rare-earth-based intermetallic compounds to answer questions of great current interest. It also sheds light on the interplay of Kondo physics and Fermi surface changes. By performing thermal conductivity and electrical resistivity measurements at temperatures as low as 25mK, the author demonstrates that the Wiedemann-Franz law, a cornerstone of metal physics, is violated at precisely the magnetic-field-induced quantum critical point of the heavy-fermion metal YbRh2Si2. This first-ever observation of a violation has dramatic consequences, as it implies a breakdown of the quasiparticle picture. Utilizing an innovative technique to measure low-temperature thermal transport isothermally as a function of the magnetic field, the thesis interprets specific, partly newly discovered, high-field transitions in CeRu2Si2 and YbRh2Si2 as Lifshitz transitions related to a change in the Fermi surface. Lastly, by applying this new technique to thermal conductivity measurements of the skutterudite superconductor LaPt4Ge12, the thesis proves that the system is a conventional superconductor with a single energy gap. Thus, it refutes the widespread speculations about unconventional Cooper pairing in this material.

Photoelectrochemical Solar Fuel Production - From Basic Principles to Advanced Devices (Paperback, Softcover reprint of the... Photoelectrochemical Solar Fuel Production - From Basic Principles to Advanced Devices (Paperback, Softcover reprint of the original 1st ed. 2016)
Sixto Gimenez, Juan Bisquert
R4,893 Discovery Miles 48 930 Ships in 10 - 15 working days

This book explores the conversion for solar energy into renewable liquid fuels through electrochemical reactions. The first section of the book is devoted to the theoretical fundamentals of solar fuels production, focusing on the surface properties of semiconductor materials in contact with aqueous solutions and the reaction mechanisms. The second section describes a collection of current, relevant characterization techniques, which provide essential information of the band structure of the semiconductors and carrier dynamics at the interface semiconductor. The third, and last section comprises the most recent developments in materials and engineered structures to optimize the performance of solar-to-fuel conversion devices.

Growth and Characterization of Bulk Superconductor Material (Paperback, Softcover reprint of the original 1st ed. 2016): Dapeng... Growth and Characterization of Bulk Superconductor Material (Paperback, Softcover reprint of the original 1st ed. 2016)
Dapeng Chen, Chengtian Lin, Andrey Maljuk, Fang Zhou
R3,334 Discovery Miles 33 340 Ships in 10 - 15 working days

This book focuses on recently developed crystal growth techniques to grow large and high quality superconducting single crystals. The techniques applied are traveling solvent floating zone (TSFZ) with infrared image furnace, Bridgeman, solution/flux and top seeded solution growth (TSSG) methods. The materials range from cuprates, cobaltates to pnictides including La2CuO4-based (LCO), YBa2Cu3O7-d (YBCO), Bi2Sr2Can 1CunO2n+4+ (n=1,2,3) (BSCCO) to NaxCoO2. The modified Bridgman "cold finger" method is devoted to the pnictide system with the best quality (transition width DTc~0.5 K) with highest Tc~38.5 K of Ba0.68K0.32Fe2A2. The book presents various iron-based superconductors with different structures, such as 1111, 122, 111, 11 and 42622,10-3-8. Detailed single crystal growth methods (fluxes, Bridgman, floating zone), the associated procedures and their impact to crystal size and quality are presented. The book also describes the influence of doping on the structure and the electric, magnetic, and superconducting properties of these compounds in a comparative study of different growth methods. It describes particularly under-, optimal and over-doped with oxygen cuprates (LCO, YBCO and BSCCO) and hole/electron/isovalently doped parent compounds AFe2As2 (A = Ba, Sr, Ca) (122), chalcogenides AxFe2-ySe2(A = K, Rb, Cs) (122), and Fe1-dTe1-xSex (11). A review of the current growth technologies and future growth efforts handling volatile and poisonous components are also presented.

Nanowires - Building Blocks for Nanoscience and Nanotechnology (Paperback, Softcover reprint of the original 1st ed. 2016):... Nanowires - Building Blocks for Nanoscience and Nanotechnology (Paperback, Softcover reprint of the original 1st ed. 2016)
Anqi Zhang, Gengfeng Zheng, Charles M Lieber
R4,421 Discovery Miles 44 210 Ships in 10 - 15 working days

This book provides a comprehensive summary of nanowire research in the past decade, from the nanowire synthesis, characterization, assembly, to the device applications. In particular, the developments of complex/modulated nanowire structures, the assembly of hierarchical nanowire arrays, and the applications in the fields of nanoelectronics, nanophotonics, quantum devices, nano-enabled energy, and nano-bio interfaces, are focused. Moreover, novel nanowire building blocks for the future/emerging nanoscience and nanotechnology are also discussed.Semiconducting nanowires represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, morphology, structure, doping and assembly, as well as incorporation with other materials, offer a variety of nanoscale building blocks with unique properties.

Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers (Paperback, Softcover reprint of the original 1st ed. 2017): Louise... Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers (Paperback, Softcover reprint of the original 1st ed. 2017)
Louise Jumpertz
R3,196 Discovery Miles 31 960 Ships in 10 - 15 working days

This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range. Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry-Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic. A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.

Ab Initio Studies on Superconductivity in Alkali-Doped Fullerides (Paperback, Softcover reprint of the original 1st ed. 2016):... Ab Initio Studies on Superconductivity in Alkali-Doped Fullerides (Paperback, Softcover reprint of the original 1st ed. 2016)
Yusuke Nomura
R2,789 Discovery Miles 27 890 Ships in 10 - 15 working days

This book covers high-transition temperature (Tc) s-wave superconductivity and the neighboring Mott insulating phase in alkali-doped fullerides. The author presents (1) a unified theoretical description of the phase diagram and (2) a nonempirical calculation of Tc. For these purposes, the author employs an extension of the DFT+DMFT (density-functional theory + dynamical mean-field theory). He constructs a realistic electron-phonon-coupled Hamiltonian with a newly formulated downfolding method. The Hamiltonian is analyzed by means of the extended DMFT. A notable aspect of the approach is that it requires only the crystal structure as a priori knowledge. Remarkably, the nonempirical calculation achieves for the first time a quantitative reproduction of the experimental phase diagram including the superconductivity and the Mott phase. The calculated Tc agrees well with the experimental data, with the difference within 10 K. The book provides details of the computational scheme, which can also be applied to other superconductors and other phonon-related topics. The author clearly describes a superconducting mechanism where the Coulomb and electron -phonon interactions show an unusual cooperation in the superconductivity thanks to the Jahn-Teller nature of the phonons.

2D Nanoelectronics - Physics and Devices of Atomically Thin Materials (Paperback, Softcover reprint of the original 1st ed.... 2D Nanoelectronics - Physics and Devices of Atomically Thin Materials (Paperback, Softcover reprint of the original 1st ed. 2017)
Mircea Dragoman, Daniela Dragoman
R3,585 Discovery Miles 35 850 Ships in 10 - 15 working days

This book is dedicated to the new two-dimensional one-atomic-layer-thick materials such as graphene, metallic chalcogenides, silicene and other 2D materials. The book describes their main physical properties and applications in nanoelctronics, photonics, sensing and computing. A large part of the book deals with graphene and its amazing physical properties. Another important part of the book deals with semiconductor monolayers such as MoS2 with impressive applications in photonics, and electronics. Silicene and germanene are the atom-thick counterparts of silicon and germanium with impressive applications in electronics and photonics which are still unexplored. Consideration of two-dimensional electron gas devices conclude the treatment. The physics of 2DEG is explained in detail and the applications in THz and IR region are discussed. Both authors are working currently on these 2D materials developing theory and applications.

Angle-Resolved Photoemission Spectroscopy on High-Temperature Superconductors - Studies of Bi2212 and Single-Layer FeSe Film... Angle-Resolved Photoemission Spectroscopy on High-Temperature Superconductors - Studies of Bi2212 and Single-Layer FeSe Film Grown on SrTiO3 Substrate (Paperback, Softcover reprint of the original 1st ed. 2016)
Junfeng He
R3,150 Discovery Miles 31 500 Ships in 10 - 15 working days

This book mainly focuses on the study of the high-temperature superconductor Bi2Sr2CaCu2O8+ (Bi2212) and single-layer FeSe film grown on SrTiO3 (STO) substrate by means of angle-resolved photoemission spectroscopy (ARPES). It provides the first electronic evidence for the origin of the anomalous high-temperature superconductivity in single-layer FeSe grown on SrTiO3 substrate. Two coexisted sharp-mode couplings have been identified in superconducting Bi2212. The first ARPES study on single-layer FeSe/STO films has provided key insights into the electronic origin of superconductivity in this system. A phase diagram and electronic indication of high Tc and insulator to superconductor crossover have been established in the single-layer FeSe/STO films. Readers will find essential information on the techniques used and interesting physical phenomena observed by ARPES.

Superconductivity - An introduction (Paperback, Softcover reprint of the original 1st ed. 2017): Philippe Mangin, Remi Kahn Superconductivity - An introduction (Paperback, Softcover reprint of the original 1st ed. 2017)
Philippe Mangin, Remi Kahn
R6,177 Discovery Miles 61 770 Ships in 10 - 15 working days

This book proposes a thorough introduction for a varied audience. The reader will master London theory and the Pippard equations, and go on to understand type I and type II superconductors (their thermodynamics, magnetic properties, vortex dynamics, current transport...), Cooper pairs and the results of BCS theory. By studying coherence and flux quantization he or she will be lead to the Josephson effect which, with the SQUID, is a good example of the applications. The reader can make up for any gaps in his knowledge with the use of the appendices, follow the logic behind each model, and assimilate completely the underlying concepts. Approximately 250 illustrations help in developing a thorough understanding. This volume is aimed towards masters and doctoral students, as well as advanced undergraduates, teachers and researchers at all levels coming from a broad range of subjects (chemistry, physics, mechanical and electrical engineering, materials science...). Engineers working in industry will have a useful introduction to other more applied or specialized material. Philippe Mangin is emeritus professor of physics at Mines Nancy Graduate School of Science, Engineering and Management of the University of Lorraine, and researcher at the Jean Lamour Institute in France. He is the former director of both the French neutron scattering facility, Leon Brillouin Laboratory in Orsay, and the Material Physics Laboratory in Nancy, and has taught superconductivity to a broad audience, in particular to engineering students. Remi Kahn is a retired senior research scientist of the French Alternative Energies and Atomic Energy Commission (CEA-Saclay). He worked at the Leon Brillouin Laboratory and was in charge of the experimental areas of INB 101 (the Orphee research reactor). This work responded to the need to bring an accessible account suitable for a wide spectrum of scientists and engineers.

Oxide Materials at the Two-Dimensional Limit (Paperback, Softcover reprint of the original 1st ed. 2016): Falko P. Netzer,... Oxide Materials at the Two-Dimensional Limit (Paperback, Softcover reprint of the original 1st ed. 2016)
Falko P. Netzer, Alessandro Fortunelli
R3,908 Discovery Miles 39 080 Ships in 10 - 15 working days

This book summarizes the current knowledge of two-dimensional oxide materials. The fundamental properties of 2-D oxide systems are explored in terms of atomic structure, electronic behavior and surface chemistry. The concept of polarity in determining the stability of 2-D oxide layers is examined, charge transfer effects in ultrathin oxide films are reviewed as well as the role of defects in 2-D oxide films. The novel structure concepts that apply in oxide systems of low dimensionality are addressed, and a chapter giving an overview of state-of-the-art theoretical methods for electronic structure determination of nanostructured oxides is included. Special emphasis is given to a balanced view from the experimental and the theoretical side. Two-dimensional materials, and 2-D oxides in particular, have outstanding behavior due to dimensionality and proximity effects. Several chapters treat prototypical model systems as illustrative examples to discuss the peculiar physical and chemical properties of 2-D oxide systems. The chapters are written by renowned experts in the field.

Electromagnetic Waves in Complex Systems - Selected Theoretical and Applied Problems (Paperback, Softcover reprint of the... Electromagnetic Waves in Complex Systems - Selected Theoretical and Applied Problems (Paperback, Softcover reprint of the original 1st ed. 2016)
Yuriy Sirenko, Lyudmyla Velychko
R5,748 Discovery Miles 57 480 Ships in 10 - 15 working days

This book gives guidance to solve problems in electromagnetics, providing both examples of solving serious research problems as well as the original results to encourage further investigations. The book contains seven chapters on various aspects of resonant wave scattering, each solving one original problem. All of them are unified by the authors' desire to show advantages of rigorous approaches at all stages, from the formulation of a problem and the selection of a method to the interpretation of results. The book reveals a range of problems associated with wave propagation and scattering in natural and artificial environments or with the design of antennas elements. The authors invoke both theoretical (analytical and numerical) and experimental techniques for handling the problems. Attention is given to mathematical simulations, computational efficiency, and physical interpretation of the experimental results. The book is written for students, graduate students and young researchers.

Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN (Paperback, Softcover reprint of the original 1st ed. 2016): Li... Technology for Advanced Focal Plane Arrays of HgCdTe and AlGaN (Paperback, Softcover reprint of the original 1st ed. 2016)
Li He, Dingjiang Yang, Guoqiang Ni
R5,546 Discovery Miles 55 460 Ships in 10 - 15 working days

This book introduces the basic framework of advanced focal plane technology based on the third-generation infrared focal plane concept. The essential concept, research advances, and future trends in advanced sensor arrays are comprehensively reviewed. Moreover, the book summarizes recent research advances in HgCdTe/AlGaN detectors for the infrared/ultraviolet waveband, with a particular focus on the numerical method of detector design, material epitaxial growth and processing, as well as Complementary Metal-Oxide-Semiconductor Transistor readout circuits. The book offers a unique resource for all graduate students and researchers interested in the technologies of focal plane arrays or electro-optical imaging sensors.

Dynamics of a Quantum Spin Liquid (Paperback, Softcover reprint of the original 1st ed. 2016): Johannes Knolle Dynamics of a Quantum Spin Liquid (Paperback, Softcover reprint of the original 1st ed. 2016)
Johannes Knolle
R3,184 Discovery Miles 31 840 Ships in 10 - 15 working days

This thesis presents an exact theoretical study of dynamical correlation functions in different phases of a two-dimensional quantum spin liquid. By calculating the dynamical spin structure factor and the Raman scattering cross section, this thesis shows that there are salient signatures-qualitative and quantitative-of the Majorana fermions and the gauge fluxes emerging as effective degrees of freedom in the exactly solvable Kitaev honeycomb lattice model. The model is a representative of a class of spin liquids with Majorana fermions coupled to Z2 gauge fields. The qualitative features of the response functions should therefore be characteristic for this broad class of topological states.

Advanced Physics of Electron Transport in Semiconductors and Nanostructures (Paperback, Softcover reprint of the original 1st... Advanced Physics of Electron Transport in Semiconductors and Nanostructures (Paperback, Softcover reprint of the original 1st ed. 2016)
Massimo V. Fischetti, William G. Vandenberghe
R4,287 Discovery Miles 42 870 Ships in 10 - 15 working days

This textbook is aimed at second-year graduate students in Physics, Electrical Engineer ing, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Ham iltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quan tization and elementary excitations in solids, of the dielectric properties of semicon ductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the 'tricky' transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green's functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Semiconductors and Modern Electronics
Charles Winrich Hardcover R1,445 Discovery Miles 14 450
Metal Halide Perovskites: Synthesis…
Jin Zhong Zhang, Zhiguo Xia, … Hardcover R2,525 Discovery Miles 25 250
Spectroscopic Techniques For…
Vladimir Protopopov Hardcover R2,987 Discovery Miles 29 870
Properties, Techniques, and Applications…
Subhash Chander, Nirmala Kumari Jangid Hardcover R4,849 Discovery Miles 48 490
Silicon Materials
Beddiaf Zaidi, Slimen Belghit Hardcover R3,471 R3,243 Discovery Miles 32 430
Graphene and Its Derivatives - Synthesis…
Ishaq Ahmad, Fabian I. Ezema Hardcover R2,866 R2,686 Discovery Miles 26 860
Transistors!
Mark S. Lundstrom Hardcover R2,736 Discovery Miles 27 360
Power Distribution Network Design…
Istvan Novak Hardcover R2,081 Discovery Miles 20 810
Power System Harmonics - Analysis…
Ahmed Zobaa, Shady H.E Abdel Aleem, … Hardcover R2,863 R2,684 Discovery Miles 26 840
Power System Stability
Kenneth Eloghene Okedu Hardcover R3,438 R3,210 Discovery Miles 32 100

 

Partners