![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science, topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications. To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.
This proceedings volume presents selected and peer reviewed 50 reports of the 2015 International Conference on "Physics and Mechanics of New Materials and Their Applications" (Azov, Russia, 19-22 May, 2015), devoted to 100th Anniversary of the Southern Federal University, Russia. The book presents processing techniques, physics, mechanics, and applications of advanced materials. The book is concentrated on some nanostructures, ferroelectric crystals, materials and composites and other materials with specific properties. In this book are presented nanotechnology approaches, modern piezoelectric techniques, physical and mechanical studies of the structure-sensitive properties of the materials. A wide spectrum of mathematical and numerical methods is applied to the solution of different technological, mechanical and physical problems for applications. Great attention is devoted to novel devices with high accuracy, longevity and extended possibilities to work in a large scale of temperatures and pressure ranges, aggressive media, etc. The characteristics of materials and composites with improved properties is shown, and new possibilities in studying of various physico-mechanical processes and phenomena are demonstrated.
This book offers an overview of power electronic applications in the study of power integrated circuit (IC) design, collecting novel research ideas and insights into fast transient response to prevent the output voltage from dropping significantly at the undershoot. It also discusses techniques and training to save energy and increase load efficiency, as well as fast transient response and high efficiency, which are the most important factors for consumer products that implement power IC. Lastly, the book focuses on power electronics for system loop analysis and optimal compensation design to help users and engineers implement their applications. The book is a valuable resource for university researchers, power IC R&D engineers, application engineers and graduate students in power electronics who wish to learn about the power IC design principles, methods, system behavior, and applications in consumer products.
This book shows the different molecular devices used for solar energy conversion and storage and the important characterization techniques for this kind of device. It has five chapters describing representative molecule-based solar cells, such as organic solar cells, dye-sensitized solar cells and hybrid solar cells (perovskite solar cell and quantum dots solar cells). It also includes two chapters demonstrating the use of molecular devices in the areas of solar fuel, water splitting and carbon dioxide reduction. There are further two chapters with interesting examples of solar energy storage related devices, like solar flow battery, solar capacitor and solar energy-thermal energy storage. Three chapters introduce important techniques used to characterize, investigate and evaluate the mechanism of molecular devices. The final chapter discusses the stability of perovskite solar cells. This book is relevant for a wide readership, and is particularly useful for students, researchers and industrial professionals who are working on molecular devices for solar energy utilization.
This thesis focuses on the transport and magneto-transport properties of graphene p-n-p junctions, such as the pronounced quantum Hall effect, a well-defined plateau-plateau transition point, and scaling behavior. In addition, it demonstrates persistent photoconductivity (PPC) in the monolayer MoS2 devices, an effect that can be attributed to random localized potential fluctuations in the devices. Further, it studies scaling behavior at zeroth Landau level and high performance of fractional values of quantum Hall plateaus in these graphene p-n-p devices. Moreover, it demonstrates a unique and efficient means of controlling the PPC effect in monolayer MoS2. This PPC effect may offer novel functionalities for MoS2-based optoelectronic applications in the future.
This thesis presents first observations of superconductivity in one- or two-atomic-scale thin layer materials. The thesis begins with a historical overview of superconductivity and the electronic structure of two-dimensional materials, and mentions that these key ingredients lead to the possibility of the two-dimensional superconductor with high phase-transition temperature and critical magnetic field. Thereafter, the thesis moves its focus onto the implemented experiments, in which mainly two different materials thallium-deposited silicon surfaces and metal-intercalated bilayer graphenes, are used. The study of the first material is the first experimental demonstration of both a gigantic Rashba effect and superconductivity in the materials supposed to be superconductors without spatial inversion symmetry. The study of the latter material is relevant to superconductivity in a bilayer graphene, which was a big experimental challenge for a decade, and has been first achieved by the author. The description of the generic and innovative measurement technique, highly effective in probing electric resistivity of ultra-thin materials unstable in an ambient environment, makes this thesis a valuable source for researchers not only in surface physics but also in nano-materials science and other condensed-matter physics.
This book provides a unique review of various aspects of metallic contamination in Si and Ge-based semiconductors. It discusses all of the important metals including their origin during crystal and/or device manufacturing, their fundamental properties, their characterization techniques and their impact on electrical devices' performance. Several control and possible gettering approaches are addressed. The book offers a valuable reference guide for all researchers and engineers studying advanced and state-of-the-art micro- and nano-electronic semiconductor devices and circuits. Adopting an interdisciplinary approach, it combines perspectives from e.g. material science, defect engineering, device processing, defect and device characterization, and device physics and engineering.
This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons...) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.
This book presents the physical characteristics and possible device applications of europium monoxide as well as materials based on it. It reveals the suitability of this material for device applications in super- and semiconductor spin electronics. Ferromagnetic semiconductors like europium monoxide have contributed to a fascinating research field in condensed matter physics. In the book are presented the electronic and magnetic properties and thermal and resonance parameters of this material, its peculiarities in external fields as a function of non-stoichiometry, doping level, both in single-crystal and thin-film states. Particular attention is paid to the possibility to use this monoxide or its solid solutions (composites) unconventionally for creating spin electronics structures which work at room temperature conditions. This book appeals to researchers, graduate students and professionals engaged in the development of semiconductor spin electronics and computer devices, technologists and theoretical physicists. It is important for the calculation, development and creation of spin memory devices for a quantum computer.
This book presents selected peer-reviewed contributions from the 2017 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2017 (Jabalpur, India, 14-16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical-mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities to operate under wide temperature and pressure ranges and aggressive media, which show improved characteristics, thanks to the developed materials and composites, opening new possibilities for different physico-mechanical processes and phenomena.
This book demonstrates how the new phenomena in the nanometer scale serve as the basis for the invention and development of novel nanoelectronic devices and how they are used for engineering nanostructures and metamaterials with unusual properties. It discusses topics such as superconducting spin-valve effect and thermal spin transport, which are important for developing spintronics; fabrication of nanostructures from antagonistic materials like ferromagnets and superconductors, which lead to a novel non-conventional FFLO-superconducting state; calculations of functional nanostructures with an exotic triplet superconductivity, which are the basis for novel nanoelectronic devices, such as superconducting spin valve, thin-film superconducting quantum interference devices (SQUIDs) and memory-elements (MRAM). Starting with theoretical chapters about triplet superconductivity, the book then introduces new ideas and approaches in the fundamentals of superconducting electronics. It presents various quantum devices based on the new theoretical approaches, demonstrating the enormous potential of the electronics of 21st century - spintronics. The book is useful for a broad audience, including researchers, engineers, PhD graduates, students and others wanting to gain insights into the frontiers of nanoscience.
This book gives a readable introduction to the important, rapidly developing, field of nanophotonics. It provides a quick understanding of the basic elements of the field, allowing students and newcomers to progress rapidly to the frontiers of their interests. Topics include: The basic mathematical techniques needed for the study of the materials of nanophotonic technology; photonic crystals and their applications as laser resonators, waveguides, and circuits of waveguides; the application of photonic crystals technology in the design of optical diodes and transistors; the basic properties needed for the design and understanding of new types of engineered materials known as metamaterials; and a consideration of how and why these engineered materials have been formulated in the lab, as well as their applications as negative refractive index materials, as perfect lens, as cloaking devices, and their effects on Cherenkov and other types of radiation. Additionally, the book introduces the new field of plasmonics and reviews its important features. The role of plasmon-polaritons in the scattering and transmission of light by rough surfaces and the enhanced transmission of light by plasmon-polariton supporting surfaces is addressed. The important problems of subwavelength resolution are treated with discussions of applications in a number of scientific fields. The basic principles of near-field optical microscopy are presented with a number of important applications. The basics of atomic cavity physics, photonic entanglement and its relation to some of the basic properties of quantum computing, and the physics associated with the study of optical lattices are presented.
This book primarily focuses on the radiation effects and compact model of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). It introduces the small-signal equivalent circuit of SiGe HBTs including the distributed effects, and proposes a novel direct analytical extraction technique based on non-linear rational function fitting. It also presents the total dose effects irradiated by gamma rays and heavy ions, as well as the single-event transient induced by pulse laser microbeams. It offers readers essential information on the irradiation effects technique and the SiGe HBTs model using that technique.
This book reports on the development and application of a new uniaxial pressure apparatus that is currently generating considerable interest in the field of materials physics. The author provides practical guidelines for performing such experiments, backed up by finite element simulations. Subsequently, the book reports on two uses of the device. In the first, high pressures are used to tune to a Van Hove singularity in Sr2RuO4, while the effects on the unconventional superconductivity and the normal state properties are investigated. In the second experiment, precise and continuous strain control is used to probe symmetry breaking and novel phase formation in the vicinity of a quantum critical point in Sr3Ru2O7.
This book is devoted to the systematic description of the role of microgeometry of modern piezo-active composites in the formation of their piezoelectric sensitivity. In five chapters, the authors analyse kinds of piezoelectric sensitivity for piezo-active composites with specific connectivity patterns and links between the microgeometric feature and piezoelectric response. The role of components and microgeometric factors is discussed in the context of the piezoelectric properties and their anisotropy in the composites. Interrelations between different types of the piezoelectric coefficients are highlighted. This book fills a gap in piezoelectric materials science and provides readers with data on the piezoelectric performance of novel composite materials that are suitable for sensor, transducer, hydroacoustic, energy-harvesting, and other applications.
Many open questions in Theoretical Physics pertain to strongly interacting quantum systems such as the quark-gluon plasma (QGP) produced in heavy-ion collisions or the strange-metal phase observed in many high-temperature superconductors. These systems are notoriously difficult to study using traditional methods such as perturbation theory, but the gauge/gravity duality offers a successful alternative approach, which maps strongly interacting quantum gauge theories to computationally tractable, classical gravity theories. This book begins with a pedagogical introduction to how the duality can be used to extract transport properties of quantum systems from their gravity dual. It then presents new results on hydrodynamic transport in strongly interacting quantum fluids, providing strong evidence that the Haack-Yarom identity between second-order transport coefficients holds for all fluids with a classical gravity dual and may be a universal feature of all strongly coupled quantum fluids such as the QGP. Newly derived Kubo formulae, expressing transport coefficients in terms of quantum correlators, hold independently of the duality. Lastly, the book discusses new results on magnetic impurities in strongly correlated metals, including the first dual gravity description of an inter-impurity coupling, crucial for the quantum criticality underlying the strange-metal phase.
This book discusses physical design and mask synthesis of directed self-assembly lithography (DSAL). It covers the basic background of DSAL technology, physical design optimizations such as placement and redundant via insertion, and DSAL mask synthesis as well as its verification. Directed self-assembly lithography (DSAL) is a highly promising patterning solution in sub-7nm technology.
This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.
This thesis experimentally demonstrates the much discussed electronic charge-glass states in solids. It focuses on quasi-two-dimensional organic conductors of the -(BEDT-TTF)2X family, which form anisotropic triangular lattices, and examines their electronic properties using various measurements: resistivity, time-resolved electric transport, X-ray diffraction analysis, and nuclear magnetic resonance spectroscopy. The hallmark of the charge glass caused by geometrical frustration of lattice structure for those materials is successfully observed for the first time. The thesis provides new insights into the exotic properties of matter driven by strong electron correlations and crystalline frustration. The introduction enables beginners to understand fundamentals of the charge-glass states and the organic-conductor family -(BEDT-TTF)2X. The comprehensive and detailed descriptions of the experimental demonstration make this a valuable resource.
This book develops a methodology for the real-time coupled quantum dynamics of electrons and phonons in nanostructures, both isolated structures and those open to an environment. It then applies this technique to both fundamental and practical problems that are relevant, in particular, to nanodevice physics, laser-matter interaction, and radiation damage in living tissue. The interaction between electrons and atomic vibrations (phonons) is an example of how a process at the heart of quantum dynamics can impact our everyday lives. This is e.g. how electrical current generates heat, making your toaster work. It is also a key process behind many crucial problems down to the atomic and molecular scale, such as the functionality of nanoscale electronic devices, the relaxation of photo-excited systems, the energetics of systems under irradiation, and thermoelectric effects. Electron-phonon interactions represent a difficult many-body problem. Fairly standard techniques are available for tackling cases in which one of the two subsystems can be treated as a steady-state bath for the other, but determining the simultaneous coupled dynamics of the two poses a real challenge. This book tackles precisely this problem.
This thesis reports a major breakthrough in discovering the superconducting mechanism in CeCoIn5, the "hydrogen atom" among heavy fermion compounds. By developing a novel theoretical formalism, the study described herein succeeded in extracting the crucial missing element of superconducting pairing interaction from scanning tunneling spectroscopy experiments. This breakthrough provides a theoretical explanation for a series of puzzling experimental observations, demonstrating that strong magnetic interactions provide the quantum glue for unconventional superconductivity. Additional insight into the complex properties of strongly correlated and topological materials was provided by investigating their non-equilibrium charge and spin transport properties. The findings demonstrate that the interplay of magnetism and disorder with strong correlations or topology leads to complex and novel behavior that can be exploited to create the next generation of spin electronics and quantum computing devices.
This book presents the proceedings of the 2nd Karl Schwarzschild Meeting on Gravitational Physics, focused on the general theme of black holes, gravity and information.Specialists in the field of black hole physics and rising young researchers present the latest findings on the broad topic of black holes, gravity, and information, highlighting its applications to astrophysics, cosmology, particle physics, and strongly correlated systems.
* An applied focus for electrical engineers and materials
scientists.
This book introduces a novel Ti-Sb-Te alloy for high-speed and low-power phase-change memory applications, which demonstrates a phase-change mechanism that differs significantly from that of conventional Ge2Sb2Te5 and yields favorable overall performance. Systematic methods, combined with better material characteristics, are used to optimize the material components and device performance. Subsequently, a phase-change memory chip based on the optimized component is successfully fabricated using 40-nm complementary metal-oxide semiconductor technology, which offers a number of advantages in many embedded applications.
This monograph presents fundamental aspects of modern spectral and other computational methods, which are not generally taught in traditional courses. It emphasizes concepts as errors, convergence, stability, order and efficiency applied to the solution of physical problems. The spectral methods consist in expanding the function to be calculated into a set of appropriate basis functions (generally orthogonal polynomials) and the respective expansion coefficients are obtained via collocation equations. The main advantage of these methods is that they simultaneously take into account all available information, rather only the information available at a limited number of mesh points. They require more complicated matrix equations than those obtained in finite difference methods. However, the elegance, speed, and accuracy of the spectral methods more than compensates for any such drawbacks. During the course of the monograph, the authors examine the usually rapid convergence of the spectral expansions and the improved accuracy that results when nonequispaced support points are used, in contrast to the equispaced points used in finite difference methods. In particular, they demonstrate the enhanced accuracy obtained in the solutionof integral equations. The monograph includes an informative introduction to old and new computational methods with numerous practical examples, while at the same time pointing out the errors that each of the available algorithms introduces into the specific solution. It is a valuable resource for undergraduate students as an introduction to the field and for graduate students wishing to compare the available computational methods. In addition, the work develops the criteria required for students to select the most suitable method to solve the particular scientific problem that they are confronting. |
![]() ![]() You may like...
Handbook of Himalayan Ecosystems and…
Bikash Ranjan Parida, Arvind Chandra Pandey, …
Hardcover
R7,424
Discovery Miles 74 240
Remote Sensing and Digital Image…
Marcelo de Carvalho Alves, Luciana Sanches
Hardcover
|