![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
This thesis describes a novel and robust way of deriving a Hamiltonian of the interacting boson model based on microscopic nuclear energy density functional theory. Based on the fact that the multi-nucleon induced surface deformation of finite nucleus can be simulated by effective boson degrees of freedom, observables in the intrinsic frame, obtained from self-consistent mean-field method with a microscopic energy density functional, are mapped onto the boson analog. Thereby, the excitation spectra and the transition rates for the relevant collective states having good symmetry quantum numbers are calculated by the subsequent diagonalization of the mapped boson Hamiltonian. Because the density functional approach gives an accurate global description of nuclear bulk properties, the interacting boson model is derived for various situations of nuclear shape phenomena, including those of the exotic nuclei investigated at rare-isotope beam facilities around the world. This work provides, for the first time, crucial pieces of information about how the interacting boson model is justified and derived from nucleon degrees of freedom in a comprehensive manner.
The mid-infrared (2-10Am) spectral region is of enormous scientific and technological interest because it contains the strongest fingerprint absorption bands of a number of pollutant and toxic gases which require monitoring in a variety of different situations (e.g., oil-rigs, coal mines, landfill sites and car exhausts) and in concentrations, ranging from parts per billion to almost 100%. Organic liquids, narcotics and many biological and bio-medical analytes also have fingerprint absorptions in this spectral range. In addition, the atmospheric transmission window between 3 Am and 5 Am enables free-space optical communications, thermal imaging and the development of infrared counter-measures for "homeland security." However, many of these applications require technology based on un-cooled, efficient, inexpensive sources and detectors which are not yet available and so wide exploitation of this spectral range has yet to take place. There is no doubt that the practical realisation of mid-infrared semiconductor lasers, LEDs and detectors which can operate at room temperature will transform them from a specialist research curiosity to a pervasive technology that will unlock a wide variety of applications. Many of the necessary developments depend on the ability to fabricate suitable high-quality epitaxial materials through the use of strained-layer engineering at the nanoscale and to manipulate the optoelectronic properties of the corresponding quantum device structures. There are a number of different materials, active region designs and device structures currently being investigated for both light sources and detectors. Many of the salient features together with recent progress ineach of these areas is presented in this text. Mid-infrared Semiconductor Optoelectronics is an overview of the current status and technological advances in this rapidly developing area. It is divided into four parts. First, some of the basic physics and the main problems facing the device engineer (together with a comparison of possible solutions) are presented. Next, there is a consideration of the different types of lasers currently under development. For practical mid-infrared applications semiconductor lasers must operate at room temperature and several different approaches to achieve this, particularly within the difficult 3a "4 Am spectral region are discussed. Part III reviews recent work on light-emitting diodes and photodetectors and also deals with negative luminescence. The final part of the book is concerned with applications and highlights, once more, the diversity and technological importance of the mid-infrared spectral region. The text has been produced by a world-wide authorship of experts in mid-infrared physics and technology, each working at the cutting edge in their own specialist area. Mid-infrared Semiconductor Optoelectronics will be an invaluable reference for researchers and graduate students drawn from backgrounds in physics, electronic and electrical engineering and materials science. Its breadth and thoroughness also make it an excellent starting point for further research and investigation.
Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies.
This book gives a survey of the current state of the art of a special class of nitrides semiconductors, Wurtzite Nitride and Oxide Semiconductors. It includes properties, growth and applications. Research in the area of nitrides semiconductors is still booming although some basic materials sciences issues were solved already about 20 years ago. With the advent of modern technologies and the successful growth of nitride substrates, these materials currently experience a second birth. Advanced new applications like light-emitters, including UV operating LEDs, normally on and normally off high frequency operating transistors are expected. With progress in clean room technology, advanced photonic and quantum optic applications are envisioned in a close future. This area of research is fascinating for researchers and students in materials science, electrical engineering, chemistry, electronics, physics and biophysics. This book aims to be the ad-hoc instrument to this active field of research.
Introduction to Epitaxy provides the essential information for a comprehensive upper-level graduate course treating the crystalline growth of semiconductor heterostructures. Heteroepitaxy represents the basis of advanced electronic and optoelectronic devices today and is considered one of the top fields in materials research. The book covers the structural and electronic properties of strained epitaxial layers, the thermodynamics and kinetics of layer growth, and the description of the major growth techniques metalorganic vapor phase epitaxy, molecular beam epitaxy and liquid phase epitaxy. Cubic semiconductors, strain relaxation by misfit dislocations, strain and confinement effects on electronic states, surface structures and processes during nucleation and growth are treated in detail. The Introduction to Epitaxy requires only little knowledge on solid-state physics. Students of natural sciences, materials science and electrical engineering as well as their lecturers benefit from elementary introductions to theory and practice of epitaxial growth, supported by pertinent references and over 200 detailed illustrations.
"Semiconductor Devices: Physics and Technology, Third Edition" is an introduction to the physical principles of modern semiconductor devices and their advanced fabrication technology. It begins with a brief historical review of major devices and key technologies and is then divided into three sections: semiconductor material properties, physics of semiconductor devices and processing technology to fabricate these semiconductor devices.
Industry Standard FDSOI Compact Model BSIM-IMG for IC Design helps readers develop an understanding of a FDSOI device and its simulation model. It covers the physics and operation of the FDSOI device, explaining not only how FDSOI enables further scaling, but also how it offers unique possibilities in circuits. Following chapters cover the industry standard compact model BSIM-IMG for FDSOI devices. The book addresses core surface-potential calculations and the plethora of real devices and potential effects. Written by the original developers of the industrial standard model, this book is an excellent reference for the new BSIM-IMG compact model for emerging FDSOI technology. The authors include chapters on step-by-step parameters extraction procedure for BSIM-IMG model and rigorous industry grade tests that the BSIM-IMG model has undergone. There is also a chapter on analog and RF circuit design in FDSOI technology using the BSIM-IMG model.
This book offers an overview of polariton Bose-Einstein condensation and the emerging field of polaritonics, providing insights into the necessary theoretical basics, technological aspects and experimental studies in this fascinating field of science. Following a summary of theoretical considerations, it guides readers through the rich physics of polariton systems, shedding light on the concept of the polariton laser, polariton microcavities, and the technical realization of optoelectronic devices with polaritonic emissions, before discussing the role of external fields used for the manipulation and control of exciton-polaritons. A glossary provides simplified summaries of the most frequently discussed topics, allowing readers to quickly familiarize themselves with the content. The book pursues an uncomplicated and intuitive approach to the topics covered, while also providing a brief outlook on current and future work. Its straightforward content will make it accessible to a broad readership, ranging from research fellows, lecturers and students to interested science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences and quantum physics.
This is the second edition of a very popular 1991 book describing
the physics and technology of semiconductor electronic devices
exploiting the Hall effect. These are magnetic field sensitive
devices such as Hall elements, magnetoresistors, and
magnetotransistors. Hall effect devices are commonly used as
magnetic field sensors and as means for characterizing
semiconductors.
"Semiconductor-On-Insulator Materials for NanoElectronics Applications is devoted to the fast evolving field of modern nanoelectronics, and more particularly to the physics and technology of nanoelectronic devices built on semiconductor-on-insulator (SemOI) systems. The book contains the achievements in this field from leading companies and universities in Europe, USA, Brazil and Russia. It is articulated around four main topics: 1. New semiconductor-on-insulator materials; 2. Physics of modern SemOI devices; 3. Advanced characterization of SemOI devices; 4. Sensors and MEMS on SOI. "Semiconductor-On-Insulator Materials for NanoElectonics Applications is useful not only to specialists in nano- and microelectronics but also to students and to the wider audience of readers who are interested in new directions in modern electronics and optoelectronics.
This book is a professional's guide to the business and technology of silicon (semiconductor) design and manufacturing. In other words, it is a "Hitchhiker's Guide to Silicon Valley;" and an explanation of what and how the enormous electronics industry works.
Metal halide perovskites are the hottest materials currently.This unique compendium covers systematically the fundamental aspects of synthesis, properties, and applications of metal halide perovskites that exhibit unique properties and useful functionalities.Written for beginners and practitioners, this useful reference text provides a good balance between fundamental concepts/principles and related recent researches with many highlighted examples.This volume benefits researchers, practitioners, graduate students in materials chemistry/nanochemistry, physical chemistry and semiconductors.
Current leading-edge CMOS transistors are about as small as they will get. We now have a simple, clear, very physical understanding of how these devices function, but it has not yet entered our textbooks. Besides, CMOS logic transistors, power transistors are increasingly important as are III-V heterostructure transistors for high-frequency communication. Transistor reliability is also important but rarely treated in introductory textbooks.As we begin a new era, in which making transistors smaller will no longer be a major driving force for progress, it is time to look back at what we have learned in transistor research. Today we see a need to convey as simply and clearly as possible the essential physics of the device that makes modern electronics possible. That is the goal of these lectures. This volume rearranges the familiar topics and distills the most essential among them, while adding most recent approaches which have become crucial to the discussion. To follow the lectures, readers need only a basic understanding of semiconductor physics. Familiarity with transistors and electronic circuits is helpful, but not assumed.
Current leading-edge CMOS transistors are about as small as they will get. We now have a simple, clear, very physical understanding of how these devices function, but it has not yet entered our textbooks. Besides, CMOS logic transistors, power transistors are increasingly important as are III-V heterostructure transistors for high-frequency communication. Transistor reliability is also important but rarely treated in introductory textbooks.As we begin a new era, in which making transistors smaller will no longer be a major driving force for progress, it is time to look back at what we have learned in transistor research. Today we see a need to convey as simply and clearly as possible the essential physics of the device that makes modern electronics possible. That is the goal of these lectures. This volume rearranges the familiar topics and distills the most essential among them, while adding most recent approaches which have become crucial to the discussion. To follow the lectures, readers need only a basic understanding of semiconductor physics. Familiarity with transistors and electronic circuits is helpful, but not assumed.
Ranging from the basic principles to the forefront of microlithography, this unique volume explores the science and technology of lithographic processes and resist materials and summarizes the most recent innovations in semiconductor manufacturing. Considers future trends in lithography and resist material technology Reviewing the interaction of light, electron beams, and X-rays with resist materials, Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology explains the theoretical basis of semiconductor fabrication presents the principles of optical image transfer discusses the chemical amplification of resist materials to improve sensitivity describes resolution enhancement and the limits of resolution in resist materials investigates contrast enhancement materials, multilayer resist, and dry development processes introduces a rigorous solution of two-dimensional light wave diffraction for the first time covers practical aspects of typical lithographic processes and more Featuring over 800 references, tables, drawings, photographs, and equations, Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology is ideal for physicists; lithographic, electrical, optical, semiconductor, integrated circuit process, chemical, and process equipment engineers; resist and polymer chemists and photochemists; materials scientists; and upper-level undergraduate and graduate students in these disciplines.
The unique compendium presents special principles and techniques of spectroscopic measurements that are used in semiconductor manufacturing.Since industrial applications of spectroscopy are significantly different from those traditionally used in scientific laboratories, the design concepts and characteristics of industrial spectroscopic devices may vary significantly from conventional systems. These peculiarities are thus succinctly summarized in this volume for a wide audience of students, engineers, and scientific workers.Exceptionally well-illustrated with practical solutions in detail, this useful reference text will open new horizons in new research areas.
This book is an introductory work on the broad topics included in Materials Science. It encompasses a number of different materials classes and properties with a focus on the structure-property relationships between them. Each class of materials will include and discuss recycling techniques and other green methods of production. Materials Chemistry: For Scientists and Engineers is ideal for all newcomers to the fi eld as well as for those seeking a knowledge of solid state chemistry.
Silicon photonics uses chip-making techniques to fabricate photonic circuits. The emerging technology is coming to market at a time of momentous change. The need of the Internet content providers to keep scaling their data centers is becoming increasing challenging, the chip industry is facing a future without Moore's law, while telcos must contend with a looming capacity crunch due to continual traffic growth. Each of these developments is significant in its own right. Collectively, they require new thinking in the design of chips, optical components, and systems. Such change also signals new business opportunities and disruption. Notwithstanding challenges, silicon photonics' emergence is timely because it is the future of several industries. For the optical industry, the technology will allow designs to be tackled in new ways. For the chip industry, silicon photonics will become the way of scaling post-Moore's law. New system architectures enabled by silicon photonics will improve large-scale computing and optical communications. Silicon Photonics: Fueling the Next Information Revolution outlines the history and status of silicon photonics. The book discusses the trends driving the datacom and telecom industries, the main but not the only markets for silicon photonics. In particular, developments in optical transport and the data center are discussed as are the challenges. The book details the many roles silicon photonics will play, from wide area networks down to the chip level. Silicon photonics is set to change the optical components and chip industries; this book explains how.
This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires, nanobelts, nanoflowers, nanoribbons and more). The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important properties and their applications in different diverging fields like photovoltaics, hydrogen production, theromelectrics, lithium battery, energy storage, photocatalysis, sensors. An important reference source for students, scientists, engineers, researchers and industrialists working on nanomaterials-based energy aspects associated with chemistry, physics, materials science, electrical engineering, energy science and technology, and environmental science.
This textbook is aimed at second-year graduate students in Physics, Electrical Engineer ing, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Ham iltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quan tization and elementary excitations in solids, of the dielectric properties of semicon ductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the 'tricky' transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green's functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.
This book reviews the progress achieved in SiC research and development, particularly over the past 10 years. It presents the essential properties of 3C-, 6H- and 4H-SiC polytypes including structural, electrical, optical, surface and interface properties; describes existing key SiC devices and also the challenges in materials growth and device fabrication of the 21st century.
This book is devoted to the systematic description of the role of microgeometry of modern piezo-active composites in the formation of their piezoelectric sensitivity. In five chapters, the authors analyse kinds of piezoelectric sensitivity for piezo-active composites with specific connectivity patterns and links between the microgeometric feature and piezoelectric response. The role of components and microgeometric factors is discussed in the context of the piezoelectric properties and their anisotropy in the composites. Interrelations between different types of the piezoelectric coefficients are highlighted. This book fills a gap in piezoelectric materials science and provides readers with data on the piezoelectric performance of novel composite materials that are suitable for sensor, transducer, hydroacoustic, energy-harvesting, and other applications.
This concise volume contains the key papers presented during the International NATO Advanced Research Workshop on Silicon on Insulator device technologies. The authors have moved beyond reporting the current state of the technology to explore wider issues, from the economic aspects incorporating SOI and related materials into circuits and systems to consideration of low temperature electronics, quantum devices and MEMS.
"Introduction to Thin Film Transistors" reviews the operation, application and technology of the main classes of thin film transistor (TFT) of current interest for large area electronics. The TFT materials covered include hydrogenated amorphous silicon (a-Si: H), poly-crystalline silicon (poly-Si), transparent amorphous oxide semiconductors (AOS), and organic semiconductors. The large scale manufacturing of a-Si: H TFTs forms the basis of theactive matrix flat panel display industry. Poly-Si TFTs facilitate the integration of electronic circuits into portable active matrix liquid crystal displays, and are increasingly used in active matrix organic light emitting diode (AMOLED) displays for smart phones. The recently developed AOS TFTs are seen as an alternative option to poly-Si and a-Si: H for AMOLED TV and large AMLCD TV applications, respectively. The organic TFTs are regarded as a cost effective route into flexible electronics. As well as treating the highly divergent preparation and properties of these materials, the physics of the devices fabricated from them is also covered, with emphasis on performance features such as carrier mobility limitations, leakage currents and instability mechanisms. The thin film transistors implemented with these materials are the conventional, insulated gate field effect transistors, and a further chapter describes a new thin film transistor structure: the source gated transistor, SGT. The driving force behind much of the development of TFTs has been their application to AMLCDs, and there is a chapter dealing with the operation of these displays, as well as of AMOLED and electrophoretic displays. A discussion of TFT and pixel layout issues is also included. For students and new-comers to the field, introductory chapters deal with basic semiconductor surface physics, and with classical MOSFET operation. These topics are handled analytically, so that the underlying device physics is clearly revealed. These treatments are then used as a reference point, from which the impact of additional band-gap states on TFT behaviour can be readily appreciated. This reference book, covering all the major TFT technologies, will be of interest to a wide range of scientists and engineers in the large area electronics industry. It will also be a broad introduction for research students and other scientists entering the field, as well as providing an accessible and comprehensive overview for undergraduate and postgraduate teaching programmes. "
Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development. |
You may like...
Design Principles for Interactive…
Gilbert Cockton, Christian Gram
Hardcover
R2,792
Discovery Miles 27 920
Education and Training for the Oil and…
Phil Andrews, Jim Playfoot
Hardcover
R2,056
Discovery Miles 20 560
|