![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
SISDEP a (TM)95 provides an international forum for the presentation of state-of-the-art research and development results in the area of numerical process and device simulation. Continuously shrinking device dimensions, the use of new materials, and advanced processing steps in the manufacturing of semiconductor devices require new and improved software. The trend towards increasing complexity in structures and process technology demands advanced models describing all basic effects and sophisticated two and three dimensional tools for almost arbitrarily designed geometries. The book contains the latest results obtained by scientists from more than 20 countries on process simulation and modeling, simulation of process equipment, device modeling and simulation of novel devices, power semiconductors, and sensors, on device simulation and parameter extraction for circuit models, practical application of simulation, numerical methods, and software.
Stochastic Energetics by now commonly designates the emerging field that bridges the gap between stochastic dynamical processes and thermodynamics. Triggered by the vast improvements in spatio-temporal resolution in nanotechnology, stochastic energetics develops a framework for quantifying individual realizations of a stochastic process on the mesoscopic scale of thermal fluctuations. This is needed to answer such novel questions as: Can one cool a drop of water by agitating an immersed nano-particle? How does heat flow if a Brownian particle pulls a polymer chain? Can one measure the free-energy of a system through a single realization of the associated stochastic process? This book will take the reader gradually from the basics to the applications: Part I provides the necessary background from stochastic dynamics (Langevin, master equation), Part II introduces how stochastic energetics describes such basic notions as heat and work on the mesoscopic scale, Part III details several applications, such as control and detection processes, as well as free-energy transducers. It aims in particular at researchers and graduate students working in the fields of nanoscience and technology.
This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF&SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique - authors build the three- and two-dimensional models for s-, p- and d-wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3He, superfluid 4He, superfluid 3He-4He mixtures, superfluid 3He-films, superfluid 3He and superfluid 3He-4He mixtures in aerogel, high temperature superconductors, heavy-fermion superconductors, superconducting films etc. Authors compare their results with experimental data and predict a lot of new experiments on CMs study. This opens for experimentalists new possibilities for search of new intriguing features of collective behavior of UCSF&SC.The monograph creates the new scientific direction - the spectroscopy of collective modes in unconventional superfluids and superconductors. It will be useful for both theorists and experimentalists, studying superfluids and superconductors, low temperature physics, condensed matter physics, solid state physics. It could be used by graduate students specializing in the same areas.
This book provides in-depth knowledge about the fundamental physical properties of bulk and low dimensional semiconductors (LDS). It also explains their applications to optoelectronic devices. The book incorporates two major themes. The first theme, starts from the fundamental principles governing the classification of solids according to their electronic properties and leads to a detailed analysis of electronic band structure and electronic transport in solids. It then focuses on the electronic transport and optical properties of semiconductor compounds, size quantization and the analysis of abrupt p-n junctions where a full analysis of the fundamental properties of intrinsic and doped semiconductors is given. The second theme is device-oriented. It aims to provide the reader with understanding of the design, fabrication and operation of optoelectronic devices based on novel semiconductor materials, such as high-speed photo detectors, light emitting diodes, multi-mode and single-mode lasers and high efficiency solar cells. The book appeals to researchers and high-level undergraduate students.
Provides a comprehensive treatment of semiconductor device physics and technology, with emphasis on modern planar silicon devices. Physical principles are explained by the use of simple physical models and illustrated by experimental measurements.
This textbook gives a complete and fundamental introduction to the properties of III-V compound semiconductor devices, highlighting the theoretical and practical aspects of their device physics. Beginning with an introduction to the basics of semiconductor physics, it presents an overview of the physics and preparation of compound semiconductor materials, as well as a detailed look at the electrical and optical properties of compound semiconductor heterostructures. The book concludes with chapters dedicated to a number of heterostructure electronic and photonic devices, including the high-electron-mobility transistor, the heterojunction bipolar transistor, lasers, unipolar photonic devices, and integrated optoelectronic devices. Featuring chapter-end problems, suggested references for further reading, as well as clear, didactic schematics accompanied by six information-rich appendices, this textbook is ideal for graduate students in the areas of semiconductor physics or electrical engineering. In addition, up-to-date results from published research make this textbook especially well-suited as a self-study and reference guide for engineers and researchers in related industries.
Currently strain engineering is the main technique used to enhance the performance of advanced silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Written from an engineering application standpoint, Strain-Engineered MOSFETs introduces promising strain techniques to fabricate strain-engineered MOSFETs and to methods to assess the applications of these techniques. The book provides the background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOSFETs at nanoscale. This book focuses on recent developments in strain-engineered MOSFETS implemented in high-mobility substrates such as, Ge, SiGe, strained-Si, ultrathin germanium-on-insulator platforms, combined with high-k insulators and metal-gate. It covers the materials aspects, principles, and design of advanced devices, fabrication, and applications. It also presents a full technology computer aided design (TCAD) methodology for strain-engineering in Si-CMOS technology involving data flow from process simulation to process variability simulation via device simulation and generation of SPICE process compact models for manufacturing for yield optimization. Microelectronics fabrication is facing serious challenges due to the introduction of new materials in manufacturing and fundamental limitations of nanoscale devices that result in increasing unpredictability in the characteristics of the devices. The down scaling of CMOS technologies has brought about the increased variability of key parameters affecting the performance of integrated circuits. This book provides a single text that combines coverage of the strain-engineered MOSFETS and their modeling using TCAD, making it a tool for process technology development and the design of strain-engineered MOSFETs.
This book contains comprehensive reviews of different technologies to harness lattice mismatch in semiconductor heterostructures and their applications in electronic and optoelectronic devices. While the book is a bit focused on metamorphic epitaxial growth, it also includes other methods like compliant substrate, selective area growth, wafer bonding, heterostructure nanowires, and more. Basic knowledge on dislocations in semiconductors and innovative methods to eliminate threading dislocations are provided, and successful device applications are reviewed. It covers a variety of important semiconductor materials like SiGe, III-V including GaN and nano-wires; epitaxial methods like molecular beam epitaxy and metal organic vapor phase epitaxy; and devices like transistors and lasers etc.
Despite significant progress in materials and fabrication technologies related to non-crystalline semiconductors, fundamental drawbacks continue to limit real-world application of these devices in electronic circuits. To help readers deal with problems such as low mobility and intrinsic time variant behavior, Circuit Design Techniques for Non-Crystalline Semiconductors outlines a systematic design approach, including circuit theory, enabling users to synthesize circuits without worrying about the details of device physics. This book: Offers examples of how self-assembly can be used as a powerful tool in circuit synthesis Covers theory, materials, techniques, and applications Provides starting threads for new research This area of research is particularly unique since it employs a range of disciplines including materials science, chemistry, mechanical engineering and electrical engineering. Recent progress in complementary polymer semiconductors and fabrication techniques such as ink-jet printing has opened doors to new themes and ideas. The book focuses on the central problem of threshold voltage shift and concepts related to navigating this issue when using non-crystalline semiconductors in electronic circuit design. Designed to give the non-electrical engineer a clear, simplified overview of fundamentals and tools to facilitate practical application, this book highlights design roadblocks and provides models and possible solutions for achieving successful circuit synthesis.
Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolution of germanium by a factor of three. However, while compound semiconductors are routinely used at infrared and optical wavelengths, their development in other wavebands has been plagued by material and fabrication problems. So far, only a few have evolved sufficiently to produce commercial detection systems. From Crystal Growth to Spectroscopic Performance Bringing together information scattered across many disciplines, this book summarizes the current status of research in compound semiconductor radiation detectors. It examines the properties, growth, and characterization of compound semiconductors as well as the fabrication of radiation sensors, with particular emphasis on the X- and gamma-ray regimes. It explores the limitations of compound semiconductors and discusses current efforts to improve spectral performances, pointing to where future discoveries may lie. A timely resource for the established researcher, this book serves as a comprehensive and illustrated reference on material science, crystal growth, metrology, detector physics, and spectroscopy. It can also be used as a textbook for those new to the field of compound semiconductors and their application to radiation detection and measurement.
Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field. The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizing key developments in the early 1950s and 1960s, the book looks at how superconductivity started to permeate society and how most of today s applications are based on the innovations of those years. It also explores the genuine revolution that occurred with the discovery of high temperature superconductors, leading to emerging applications in power storage and fusion reactors. Superconductivity has become a vast field and this full-color book shows how far it has come in the past 100 years. Along with reviewing significant research and experiments, leading scientists share their insight and experiences working in this exciting and evolving area."
For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Quantum Well pFET - is discussed. Electrical testing shows remarkable short-channel performance and prototypes are found to be competitive with a state-of-the-art planar strained-silicon technology. High mobility channels, providing high drive current, and heterostructure confinement, providing good short-channel control, make a promising combination for future technology nodes.
This text presents papers given at a discussion meeting of The Royal Society, held in July 1992, concerning thin film diamond. Traditionally, commercial diamond synthesis was almost entirely by the high-pressure, high-temperature technique, but in recent years, low-pressure diamond synthesis has attracted world-wide interest due to the possible use of diamond films in commercial applications. These papers review these low-pressure diamond synthesis techniques. An historical overview of the low-pressure growth techniques and a description of diamond and crystal morphology is given, followed by a discussion of the kinetics and gas phase chemistry involved in thin film growth. Peter Bachmann presents a review of the current deposition techniques, and summarizes the results of various deposition conditions to show that diamond growth is only possible in a narrow range of gas compositions. Other chapters discuss the electronic, optical, thermal and mechanical properties of thin diamond films as well as the electronic structure, deposition techniques and applications of diamond-like carbon (DLC) films. The final chapter discusses the various thermal and optical infra-red and X-ray applications of diamond thin films. Researchers in materials, physics and mechanical engineering should find this text a timely review of a rapidly advancing field, and it should provide practising engineers in the electronic and manufacturing industries with a useful overview of the field.
Space applications, nuclear physics, military operations, medical imaging, and especially electronics (modern silicon processing) are obvious fields in which radiation damage can have serious consequences, i.e., degradation of MOS devices and circuits. Zeroing in on vital aspects of this broad and complex topic, Radiation Effects in Semiconductors addresses the ever-growing need for a clear understanding of radiation effects on semiconductor devices and circuits to combat potential damage it can cause. Features a chapter authored by renowned radiation authority Lawrence T. Clark on Radiation Hardened by Design SRAM Strategies for TID and SEE Mitigation This book analyzes the radiation problem, focusing on the most important aspects required for comprehending the degrading effects observed in semiconductor devices, circuits, and systems when they are irradiated. It explores how radiation interacts with solid materials, providing a detailed analysis of three ways this occurs: Photoelectric effect, Compton effect, and creation of electron-positron pairs. The author explains that the probability of these three effects occurring depends on the energy of the incident photon and the atomic number of the target. The book also discusses the effects that photons can have on matter-in terms of ionization effects and nuclear displacement Written for post-graduate researchers, semiconductor engineers, and nuclear and space engineers with some electronics background, this carefully constructed reference explains how ionizing radiation is creating damage in semiconducting devices and circuits and systems-and how that damage can be avoided in areas such as military/space missions, nuclear applications, plasma damage, and X-ray-based techniques. It features top-notch international experts in industry and academia who address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches.
This open access book reports on cutting-edge electrical engineering and microelectronics solutions to foster and support digitalization in the semiconductor industry. Based on the outcomes of the European project iDev40, which were presented at the two first conference editions of the European Advances in Digital Transformation Conference (EADCT 2018 and EADTC 2019), the book covers different, multidisciplinary aspects related to digital transformation, including technological and industrial developments, as well as human factors research and applications. Topics include modeling and simulation methods in semiconductor operations, supply chain management issues, employee training methods and workplaces optimization, as well as smart software and hardware solutions for semiconductor manufacturing. By highlighting industrially relevant developments and discussing open issues related to digital transformation, the book offers a timely, practice-oriented guide to graduate students, researchers and professionals interested in the digital transformation of manufacturing domains and work environments.
Worldwide, many researchers are fascinated from the rich physics of se- conductor quantum dots (QDs) and their high potential for applications in photonics and quantum information technology. QDs are nanometer-sized three-dimensional structures which con?ne electrons and holes in dimensions oftheircorrespondingDeBrogliewavelength.Asaresult,theenergylevelsare quantized and for that reason they are also often referred as arti?cial atoms. Epitaxially grown QDs which are the subject of this book are embedded in a solid state semiconductor matrix and their size, shape, composition, and lo- tion can be tailored to a large extent by modern growth techniques. In QDs, excitations can involve more than a single carrier and interaction among the carriers modify or even dominate the emission properties. Therefore, a simple two-level description is only appropriate under certain well de?ned expe- mental conditions. Tremendous progress has been obtained in understanding their electronic, optical and spin properties mainly by performing single dot spectroscopy and using appropriate theoretical models.
The mid-infrared (2-10Am) spectral region is of enormous scientific and technological interest because it contains the strongest fingerprint absorption bands of a number of pollutant and toxic gases which require monitoring in a variety of different situations (e.g., oil-rigs, coal mines, landfill sites and car exhausts) and in concentrations, ranging from parts per billion to almost 100%. Organic liquids, narcotics and many biological and bio-medical analytes also have fingerprint absorptions in this spectral range. In addition, the atmospheric transmission window between 3 Am and 5 Am enables free-space optical communications, thermal imaging and the development of infrared counter-measures for "homeland security." However, many of these applications require technology based on un-cooled, efficient, inexpensive sources and detectors which are not yet available and so wide exploitation of this spectral range has yet to take place. There is no doubt that the practical realisation of mid-infrared semiconductor lasers, LEDs and detectors which can operate at room temperature will transform them from a specialist research curiosity to a pervasive technology that will unlock a wide variety of applications. Many of the necessary developments depend on the ability to fabricate suitable high-quality epitaxial materials through the use of strained-layer engineering at the nanoscale and to manipulate the optoelectronic properties of the corresponding quantum device structures. There are a number of different materials, active region designs and device structures currently being investigated for both light sources and detectors. Many of the salient features together with recent progress ineach of these areas is presented in this text. Mid-infrared Semiconductor Optoelectronics is an overview of the current status and technological advances in this rapidly developing area. It is divided into four parts. First, some of the basic physics and the main problems facing the device engineer (together with a comparison of possible solutions) are presented. Next, there is a consideration of the different types of lasers currently under development. For practical mid-infrared applications semiconductor lasers must operate at room temperature and several different approaches to achieve this, particularly within the difficult 3a "4 Am spectral region are discussed. Part III reviews recent work on light-emitting diodes and photodetectors and also deals with negative luminescence. The final part of the book is concerned with applications and highlights, once more, the diversity and technological importance of the mid-infrared spectral region. The text has been produced by a world-wide authorship of experts in mid-infrared physics and technology, each working at the cutting edge in their own specialist area. Mid-infrared Semiconductor Optoelectronics will be an invaluable reference for researchers and graduate students drawn from backgrounds in physics, electronic and electrical engineering and materials science. Its breadth and thoroughness also make it an excellent starting point for further research and investigation.
This thesis describes a novel and robust way of deriving a Hamiltonian of the interacting boson model based on microscopic nuclear energy density functional theory. Based on the fact that the multi-nucleon induced surface deformation of finite nucleus can be simulated by effective boson degrees of freedom, observables in the intrinsic frame, obtained from self-consistent mean-field method with a microscopic energy density functional, are mapped onto the boson analog. Thereby, the excitation spectra and the transition rates for the relevant collective states having good symmetry quantum numbers are calculated by the subsequent diagonalization of the mapped boson Hamiltonian. Because the density functional approach gives an accurate global description of nuclear bulk properties, the interacting boson model is derived for various situations of nuclear shape phenomena, including those of the exotic nuclei investigated at rare-isotope beam facilities around the world. This work provides, for the first time, crucial pieces of information about how the interacting boson model is justified and derived from nucleon degrees of freedom in a comprehensive manner.
Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies.
This book gives a survey of the current state of the art of a special class of nitrides semiconductors, Wurtzite Nitride and Oxide Semiconductors. It includes properties, growth and applications. Research in the area of nitrides semiconductors is still booming although some basic materials sciences issues were solved already about 20 years ago. With the advent of modern technologies and the successful growth of nitride substrates, these materials currently experience a second birth. Advanced new applications like light-emitters, including UV operating LEDs, normally on and normally off high frequency operating transistors are expected. With progress in clean room technology, advanced photonic and quantum optic applications are envisioned in a close future. This area of research is fascinating for researchers and students in materials science, electrical engineering, chemistry, electronics, physics and biophysics. This book aims to be the ad-hoc instrument to this active field of research.
"Semiconductor Devices: Physics and Technology, Third Edition" is an introduction to the physical principles of modern semiconductor devices and their advanced fabrication technology. It begins with a brief historical review of major devices and key technologies and is then divided into three sections: semiconductor material properties, physics of semiconductor devices and processing technology to fabricate these semiconductor devices.
Introduction to Epitaxy provides the essential information for a comprehensive upper-level graduate course treating the crystalline growth of semiconductor heterostructures. Heteroepitaxy represents the basis of advanced electronic and optoelectronic devices today and is considered one of the top fields in materials research. The book covers the structural and electronic properties of strained epitaxial layers, the thermodynamics and kinetics of layer growth, and the description of the major growth techniques metalorganic vapor phase epitaxy, molecular beam epitaxy and liquid phase epitaxy. Cubic semiconductors, strain relaxation by misfit dislocations, strain and confinement effects on electronic states, surface structures and processes during nucleation and growth are treated in detail. The Introduction to Epitaxy requires only little knowledge on solid-state physics. Students of natural sciences, materials science and electrical engineering as well as their lecturers benefit from elementary introductions to theory and practice of epitaxial growth, supported by pertinent references and over 200 detailed illustrations.
Industry Standard FDSOI Compact Model BSIM-IMG for IC Design helps readers develop an understanding of a FDSOI device and its simulation model. It covers the physics and operation of the FDSOI device, explaining not only how FDSOI enables further scaling, but also how it offers unique possibilities in circuits. Following chapters cover the industry standard compact model BSIM-IMG for FDSOI devices. The book addresses core surface-potential calculations and the plethora of real devices and potential effects. Written by the original developers of the industrial standard model, this book is an excellent reference for the new BSIM-IMG compact model for emerging FDSOI technology. The authors include chapters on step-by-step parameters extraction procedure for BSIM-IMG model and rigorous industry grade tests that the BSIM-IMG model has undergone. There is also a chapter on analog and RF circuit design in FDSOI technology using the BSIM-IMG model.
This book offers an overview of polariton Bose-Einstein condensation and the emerging field of polaritonics, providing insights into the necessary theoretical basics, technological aspects and experimental studies in this fascinating field of science. Following a summary of theoretical considerations, it guides readers through the rich physics of polariton systems, shedding light on the concept of the polariton laser, polariton microcavities, and the technical realization of optoelectronic devices with polaritonic emissions, before discussing the role of external fields used for the manipulation and control of exciton-polaritons. A glossary provides simplified summaries of the most frequently discussed topics, allowing readers to quickly familiarize themselves with the content. The book pursues an uncomplicated and intuitive approach to the topics covered, while also providing a brief outlook on current and future work. Its straightforward content will make it accessible to a broad readership, ranging from research fellows, lecturers and students to interested science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences and quantum physics. |
You may like...
Electric Power Conversion and…
Majid Nayeripour, Mahdi Mansouri
Hardcover
R3,077
Discovery Miles 30 770
Advances in Semiconductor Nanostructures…
Alexander V Latyshev, Anatoliy V Dvurechenskii, …
Paperback
Power System Harmonics - Analysis…
Ahmed Zobaa, Shady H.E Abdel Aleem, …
Hardcover
R2,555
Discovery Miles 25 550
2D Semiconductor Materials and Devices
Dongzhi Chi, K.E.Johnson Goh, …
Paperback
R3,992
Discovery Miles 39 920
Flash Lamp Annealing - From Basics to…
Lars Rebohle, Slawomir Prucnal, …
Hardcover
R3,364
Discovery Miles 33 640
|