![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
Semiconductor Microchips and Fabrication Advanced and highly illustrated guide to semiconductor manufacturing from an experienced industry insider Semiconductor Microchips and Fabrication is a practical yet advanced book on the theory, design, and manufacturing of semiconductor microchips that describes the process using the principles of physics and chemistry, fills in the knowledge gaps for professionals and students who need to know how manufacturing equipment works, and provides valuable suggestions and solutions to many problems that students or engineers often encounter in semiconductor processing, including useful experiment results to help in process work. The explanation of the semiconductor manufacturing process, and the equipment needed, is carried out based on the machines that are used in clean rooms over the world so readers understand how they can use the equipment to achieve their design and manufacturing ambitions. Combining theory with practice, all descriptions are carried out around the actual equipment and processes by way of a highly visual text, with illustrations including equipment pictures, manufacturing process schematics, and structures of semiconductor microchips. Sample topics covered in Semiconductor Microchips and Fabrication include: An introduction to basic concepts, such as impedance mismatch from plasma machines and theories, such as energy bands and Clausius-Clapeyron equation Basic knowledge used in semiconductor devices and manufacturing machines, including DC and AC circuits, electric fields, magnetic fields, resonant cavity, and the components used in the devices and machines Transistor and integrated circuits, including bipolar transistors, junction field effect transistors, and metal-semiconductor field effect transistors The main processes used in the manufacturing of microchips, including lithography, metallization, reactive-ion etching (RIE), plasma-enhanced chemical vapor deposition (PECVD), thermal oxidation and implantation, and more The skills in the design and problem solving of processes, such as how to design a dry etching recipe, and how to solve the micro-grass problems in Bosch process Through Semiconductor Microchips and Fabrication, readers can obtain the fundamental knowledge and skills of semiconductor manufacturing, which will help them better understand and use semiconductor technology to improve their product quality or project research. Before approaching this text, readers should have basic knowledge of physics, chemistry, and circuitry.
The quantum statistical properties of the light wave generated in a semiconductor laser or a light-emitting diode (LED) has been a field of intense research for more than a decade. This research monograph discusses recent research activities in nonclassical light generation based on semiconductor devices. This volume is composed of four major parts. The first discusses the generation of sub-shot-noise light in macroscopic pn junction light-emitting devices, including semiconductor laser and light-emitting diodes. The second part discusses the application of squeezed light in high-precision measurement, including spectroscopy and interferometry. The third part addresses the Coulomb blockade effect in a mesoscopic pn junction and the generation of single photon states. The last part covers the detection of single photons using a visible light photon counter.
The unique electronic band structure of graphene gives rise to remarkable properties when in contact with a superconducting electrode. In this thesis two main aspects of these junctions are analyzed: the induced superconducting proximity effect and the non-local transport properties in multi-terminal devices. For this purpose specific models are developed and studied using Green function techniques, which allow us to take into account the detailed microscopic structure of the graphene-superconductor interface. It is shown that these junctions are characterized by the appearance of bound states at subgap energies which are localized at the interface region. Furthermore it is shown that graphene-supercondutor-graphene junctions can be used to favor the splitting of Cooper pairs for the generation of non-locally entangled electron pairs. Finally, using similar techniques the thesis analyzes the transport properties of carbon nanotube devices coupled with superconducting electrodes and in graphene superlattices.
This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Through an original perspective that their key particles, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects the macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors start from solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or graduate students in physics with no prior background will benefit from this book. The developed concepts and methodology should also be useful to present researches on ultracold atomic gases, exciton-polaritons, and quantum information.
Providing an important link between the theoretical knowledge in the field of non-linier physics and practical application problems in microelectronics, the purpose of the book is popularization of the physical approach for reliability assurance. Another unique aspect of the book is the coverage given to the role of local structural defects, their mathematical description, and their impact on the reliability of the semiconductor devices.
This book covers several of the most important topics of current interest at the forefront of scanning probe microscopy. These include a realistic theory of atom-resolving atomic force microscopy (AFM), fundamentals of MBE growth of III-V compound semiconductors and atomic manipulation for future single-electron devices.
Almost all semiconductor devices contain metal-semiconductor, insulator-semiconductor, insulator-metal and/or semiconductor-semiconductor interfaces; and their electronic properties determine the device characteristics. This is the first monograph that treats the electronic properties of all different types of semiconductor interfaces. Using the continuum of interfacea "induced gap states (IFIGS) as a unifying theme, MAnch explains the band-structure lineup at all types of semiconductor interfaces. These intrinsic IFIGS are the wave-function tails of electron states, which overlap a semiconductor band-gap exactly at the interface, so they originate from the quantum-mechanical tunnel effect. He shows that a more chemical view relates the IFIGS to the partial ionic character of the covalent interface-bonds and that the charge transfer across the interface may be modeled by generalizing Paulinga (TM)s electronegativity concept. The IFIGS-and-electronegativity theory is used to quantitatively explain the barrier heights and band offsets of well-characterized Schottky contacts and semiconductor heterostructures, respectively.
The 14th conference in the series focused on the most recent advances in the study of the structural and electronic properties of semiconducting materials by the application of transmission and scanning electron microscopy. The latest developments in the use of other important microcharacterisation techniques were also covered and included the latest work using scanning probe microscopy and also X-ray topography and diffraction.
This book is concerned with wafer fabrication and the factories that manufacture microprocessors and other integrated circuits. With the invention of the transistor in 1947, the world as we knew it changed. The transistor led to the microprocessor, and the microprocessor, the guts of the modern computer, has created an epoch of virtually unlimited information processing. The electronics and computer revolution has brought about, for better or worse, a new way of life. This revolution could not have occurred without wafer fabrication, and its associated processing technologies. A microprocessor is fabricated via a lengthy, highly-complex sequence of chemical processes. The success of modern chip manufacturing is a miracle of technology and a tribute to the hundreds of engineers who have contributed to its development. This book will delineate the magnitude of the accomplishment, and present methods to analyze and predict the performance of the factories that make the chips. The set of topics covered juxtaposes several disciplines of engineering. A primary subject is the chemical engineering aspects of the electronics industry, an industry typically thought to be strictly an electrical engineer's playground. The book also delves into issues of manufacturing, operations performance, economics, and the dynamics of material movement, topics often considered the domain of industrial engineering and operations research. Hopefully, we have provided in this work a comprehensive treatment of both the technology and the factories of wafer fabrication. Novel features of these factories include long process flows and a dominance of processing over operational issues.
In recent decades, the way human beings interact with technology has been significantly transformed. In our daily life, ever fewer manually controlled devices are used, giving way to automatized houses, cars, and devices. A significant part of this technological revolution relies on signal detection and evaluation, placing detectors as core devices for further technological developments. This book introduces a versatile contribution to achieving light sensing: Organic Semiconductor Devices for Light Detection. The text is organized to guide the reader through the main concepts of light detection, followed by a introduction to the semiconducting properties of organic molecular solids. The sources of non-idealities in organic photodetectors are presented in chapter 5, and a new device concept, which aims to overcome some of the limitation discussed in the previous chapters, is demonstrated. Finally, an overview of the field is given with a selection of open points for future investigation.
This book presents the high-precision analysis of ground states and low-energy excitations in fractional quantum Hall states formed by Dirac electrons, which have attracted a great deal of attention. In particular the author focuses on the physics of fractional quantum Hall states in graphene on a hexagonal boron nitride substrate, which was recently implemented in experiments. The numerical approach employed in the book, which uses an exact numerical diagonalization of an effective model Hamiltonian on a Haldane's sphere based on pseudopotential representation of electron interaction, provides a better understanding of the recent experiments. The book reviews various aspects of quantum Hall effect: a brief history, recent experiments with graphene, and fundamental theories on integer and fractional Hall effects. It allows readers to quickly grasp the physics of quantum Hall states of Dirac fermions, and to catch up on latest research on the quantum Hall effect in graphene.
Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology provides a comprehensive overview of materials for application in thin film solar cells. It is the first book that compares experimental and computer-modeling methods, combining the state of the art in technology with the latest insights in device modeling. A wide range of experimental issues are explored, from materials and basic device physics of thin film solar cells to potential mass production facilities for solar panels. The modeling section presents an approach to integrated optical and electrical modeling of complete devices, including optical light trapping, and describes the physical materials parameters related to amorphous silicon that are crucial for successful modeling. The increasing importance of multijunction cells with different bandgap components for thin film silicon cells is reflected in a description of the latest breakthroughs acquired experimentally and by modeling. Concluding chapters describe what can be learned from combined modeling and device fabrication, indicating potential future methods of amorphous silicon solar cell optimization. This book will prove invaluable to researchers in the amorphous and microcrystalline silicon field and the physical and experimental approaches will be of interest to researchers investigating solar cells or other film devices for large area applications.
This book presents a variety of techniques using high-frequency (RF) and time-domain measurements to understand the electrical performance of novel, modern transistors made of materials such as graphene, carbon nanotubes, and silicon-on-insulator, and using new transistor structures. The author explains how to use conventional RF and time- domain measurements to characterize the performance of the transistors. In addition, he explains how novel transistors may be subject to effects such as self-heating, period-dependent output, non-linearity, susceptibility to short-term degradation, DC-invisible structural defects, and a different response to DC and transient inputs. Readers will understand that in order to fully understand and characterize the behavior of a novel transistor, there is an arsenal of dynamic techniques available. In addition to abstract concepts, the reader will learn of practical tips required to achieve meaningful measurements, and will understand the relationship between these measurements and traditional, conventional DC characteristics.
Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-um CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding. "
The quantum Hall effects remains one of the most important subjects to have emerged in condensed matter physics over the past 20 years. The fractional quantum Hall effect, in particular, has opened up a new paradigm in the study of strongly correlated electrons, and it has been shown that new concepts, such as fractional statistics, anyon, chiral Luttinger liquid and composite particles, are realized in two-dimensional electron systems. This book explains the quantum Hall effects together with these new concepts starting from elementary quantum mechanics. Thus, graduate students can use this book to gain an overall understanding of these phenomena.
This thesis presents an in-depth exploration of imperfections that can be found in self-catalysed III-V semiconductor nanowires. By utilising advanced electron microscopy techniques, the interface sharpness and defects at the atomic and macroscopic scale are analysed. It is found that a surprising variety and quantity of defect structures can exist in nanowire systems, and that they can in fact host some never-before-seen defect configurations. To probe how these defects are formed, conditions during nanowire growth can be emulated inside the microscope using the latest generation of in-situ heating holder. This allowed the examination of defect formation, dynamics, and removal, revealing that many of the defects can in fact be eliminated. This information is critical for attaining perfect nanowire growth. The author presents annealing strategies to improve crystal quality, and therefore device performance.
This textbook gives a complete and fundamental introduction to the properties of III-V compound semiconductor devices, highlighting the theoretical and practical aspects of their device physics. Beginning with an introduction to the basics of semiconductor physics, it presents an overview of the physics and preparation of compound semiconductor materials, as well as a detailed look at the electrical and optical properties of compound semiconductor heterostructures. The book concludes with chapters dedicated to a number of heterostructure electronic and photonic devices, including the high-electron-mobility transistor, the heterojunction bipolar transistor, lasers, unipolar photonic devices, and integrated optoelectronic devices. Featuring chapter-end problems, suggested references for further reading, as well as clear, didactic schematics accompanied by six information-rich appendices, this textbook is ideal for graduate students in the areas of semiconductor physics or electrical engineering. In addition, up-to-date results from published research make this textbook especially well-suited as a self-study and reference guide for engineers and researchers in related industries.
This volume contains the papers presented at the International Workshop on the Cur rent Problems in Condensed Matter: Theory and Experiment, held at Cocoyoc, More los, Mexico, during January 5-9, 1997. The participants had come from Argentina, Austria, Chile, England, France, Germany, Italy, Japan, Mexico, Switzerland, and the USA. The presentations at the Workshop provided state-of-art reviews of many of the most important problems, currently under study, in condensed matter. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Karl Heinz Bennemann, on his sixty-fifth birthday. This Festschrift is just a small measure of recognition of the intellectualleadership of Professor Bennemann in the field and equally important, as a sincere tribute to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Karl have been deeply touched by Karl's inquisitive scientific mind as well as by bis kindness and generosity."
Advanced Laser Diode Reliability focuses on causes and effects of degradations of state-of-the-art semiconductor laser diodes. It aims to provide a tool for linking practical measurements to physical diagnostics. To this purpose, it reviews the current technologies, addressing their peculiar details that can promote specific failure mechanisms. Two sections will support this kernel: a) Failure Analysis techniques, procedures and examples; b) Device-oriented laser modelling and parameter extraction.
Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text that discusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content builds on what has been learnt in an elementary (core) course in solid state physics and electronic behaviour, but care has been taken to ensure that important aspects such as the synthesis of these polymers are not overlooked. The chemistry is treated in a manner appropriate to students of physics. Polymer Electronics presents a thorough discussion of the physics and chemistry behind this new and important area of science, appealing to all physical scientists with an interest in the field.
Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors I know of no better text I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters."
This proceedings volume archives the contributions of the speakers who attended the NATO Advanced Research Workshop on "Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment" held at the Sanatorium Puscha Ozerna, th th Kyiv, Ukraine, from 25 to 29 April 2004. The semiconductor industry has maintained a very rapid growth during the last three decades through impressive technological achievements which have resulted in products with higher performance and lower cost per function. After many years of development semiconductor-on-insulator materials have entered volume production and will increasingly be used by the manufacturing industry. The wider use of semiconductor (especially silicon) on insulator materials will not only enable the benefits of these materials to be further demonstrated but, also, will drive down the cost of substrates which, in turn, will stimulate the development of other novel devices and applications. In itself this trend will encourage the promotion of the skills and ideas generated by researchers in the Former Soviet Union and Eastern Europe and their incorporation in future collaborations.
The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic materials). Thus the book is also useful for experts working in physics, chemistry, and related engineering and industrial fields.
Metal Impurities in Silicon-Device Fabrication treats the transition-metal impurities generated during the fabrication of silicon samples and devices. The different mechanisms responsible for contamination are discussed, and a survey is given of their impact on device performance. The specific properties of the main and rare impurities in silicon are examined, as well as the detection methods and requirements in modern technology. Finally, impurity gettering is studied along with modern techniques to determine the gettering efficiency. In all of these subjects, reliable and up-to-date data are presented. This monograph provides a thorough review of the results of recent scientific investigations, as well as the relevant data and properties of the various metal impurities in silicon. The new edition includes important recent data and a number of new tables. |
![]() ![]() You may like...
On ne nait pas femme: on le devient…
Bonnie Mann, Martina Ferrari
Hardcover
R2,407
Discovery Miles 24 070
|