0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (9)
  • R250 - R500 (9)
  • R500+ (1,527)
  • -
Status
Format
Author / Contributor
Publisher

Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors

Advances in Solid State Physics 48 (Hardcover, 2009 ed.): Rolf Haug Advances in Solid State Physics 48 (Hardcover, 2009 ed.)
Rolf Haug
R4,410 Discovery Miles 44 100 Ships in 10 - 15 working days

The 2008 Spring Meeting of the Arbeitskreis Festkorperphysik was held in Berlin, Germany, between February 24 and February 29, 2008 in conjunction with the 72nd Annual Meeting of the Deutsche Physikalische Gesellschaft. The 2008 meeting was the largest physics meeting in Europe and among the largest physics meetings in the world in 2008."

Atomistic Aspects of Epitaxial Growth (Hardcover, 2002 ed.): Miroslav Kotrla, Nicolas I. Papanicolaou, Dimitri Vvedensky, Luc... Atomistic Aspects of Epitaxial Growth (Hardcover, 2002 ed.)
Miroslav Kotrla, Nicolas I. Papanicolaou, Dimitri Vvedensky, Luc T. Wille
R3,000 Discovery Miles 30 000 Ships in 10 - 15 working days

Epitaxial growth lies at the heart of a wide range of industrial and technological applications. Recent breakthroughs, experimental and theoretical, allow actual atom-by-atom manipulation and an understanding of such processes, opening up a totally new area of unprecedented nanostructuring.

The contributions to Atomistic Aspects of Epitaxial Growth are divided into five main sections, taking the reader from the atomistic details of surface diffusion to the macroscopic description of epitaxial systems. many of the papers contain substantial background material on theoretical and experimental methods, making the book suitable for both graduate students as a supplementary text in a course on epitaxial phenomena, and for professionals in the field.

CMOS PLL Synthesizers: Analysis and Design (Hardcover, 2005 ed.): Keliu Shu, Edgar Sanchez-Sinencio CMOS PLL Synthesizers: Analysis and Design (Hardcover, 2005 ed.)
Keliu Shu, Edgar Sanchez-Sinencio
R3,004 Discovery Miles 30 040 Ships in 10 - 15 working days

Thanks to the advance of semiconductor and communication technology, the wireless communication market has been booming in the last two decades. It evolved from simple pagers to emerging third-generation (3G) cellular phones. In the meanwhile, broadband communication market has also gained a rapid growth. As the market always demands hi- performance and low-cost products, circuit designers are seeking hi- integration communication devices in cheap CMOS technology. The phase-locked loop frequency synthesizer is a critical component in communication devices. It works as a local oscillator for frequency translation and channel selection in wireless transceivers and broadband cable tuners. It also plays an important role as the clock synthesizer for data converters in the analog-and-digital signal interface. This book covers the design and analysis of PLL synthesizers. It includes both fundamentals and a review of the state-of-the-art techniques. The transient analysis of the third-order charge-pump PLL reveals its locking behavior accurately. The behavioral-level simulation of PLL further clarifies its stability limit. Design examples are given to clearly illustrate the design procedure of PLL synthesizers. A complete derivation of reference spurs in the charge-pump PLL is also presented in this book. The in-depth investigation of the digital CA modulator for fractional-N synthesizers provides insightful design guidelines for this important block.

Modern Aspects of Josephson Dynamics and Superconductivity Electronics (Hardcover, 1st ed. 2017): Iman Askerzade, Ali Bozbey,... Modern Aspects of Josephson Dynamics and Superconductivity Electronics (Hardcover, 1st ed. 2017)
Iman Askerzade, Ali Bozbey, Mehmet Canturk
R4,190 Discovery Miles 41 900 Ships in 12 - 19 working days

In this book new experimental investigations of properties of Josephson junctions and systems are explored with the help of recent developments in superconductivity. The theory of the Josephson effect is presented taking into account the influence of multiband and anisotropy effects in new superconducting compounds. Anharmonicity effects in current-phase relation on Josephson junctions dynamics are discussed. Recent studies in analogue and digital superconductivity electronics are presented. Topics of special interest include resistive single flux quantum logic in digital electronics. Application of Josephson junctions in quantum computing as superconducting quantum bits are analyzed. Particular attention is given to understanding chaotic behaviour of Josephson junctions and systems. The book is written for graduate students and researchers in the field of applied superconductivity.

Advanced Materials - Proceedings of the International Conference on "Physics and Mechanics of New Materials and Their... Advanced Materials - Proceedings of the International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2019 (Hardcover, 1st ed. 2020)
Ivan A. Parinov, Shun-Hsyung Chang, Banh Tien Long
R5,714 Discovery Miles 57 140 Ships in 10 - 15 working days

This book presents selected peer-reviewed contributions from the 2019 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2019 (Hanoi, Vietnam, 7-10 November, 2019), divided into four scientific themes: processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystals, materials and composites with special properties. It presents nanotechnology approaches, modern environmentally friendly techniques and physical-chemical and mechanical studies of the structural-sensitive and physical-mechanical properties of materials. The obtained results are based on new achievements in material sciences and computational approaches, methods and algorithms (in particular, finite-element and finite-difference modeling) applied to the solution of different technological, mechanical and physical problems. The obtained results have a significant interest for theory, modeling and test of advanced materials. Other results are devoted to promising devices demonstrating high accuracy, longevity and new opportunities to work effectively under critical temperatures and high pressures, in aggressive media, etc. These devices demonstrate improved comparative characteristics, caused by developed materials and composites, allowing investigation of physio-mechanical processes and phenomena based on scientific and technological progress.

Progress in SOI Structures and Devices Operating at Extreme Conditions (Hardcover, 2002 ed.): Francis Balestra, Alexei N.... Progress in SOI Structures and Devices Operating at Extreme Conditions (Hardcover, 2002 ed.)
Francis Balestra, Alexei N. Nazarov, Vladimir S. Lysenko
R5,789 Discovery Miles 57 890 Ships in 10 - 15 working days

A review of the electrical properties, performance and physical mechanisms of the main silicon-on-insulator (SOI) materials and devices. Particular attention is paid to the reliability of SOI structures operating in harsh conditions. The first part of the book deals with material technology and describes the SIMOX and ELTRAN technologies, the smart-cut technique, SiCOI structures and MBE growth. The second part covers reliability of devices operating under extreme conditions, with an examination of low and high temperature operation of deep submicron MOSFETs and novel SOI technologies and circuits, SOI in harsh environments and the properties of the buried oxide. The third part deals with the characterization of advanced SOI materials and devices, covering laser-recrystallized SOI layers, ultrashort SOI MOSFETs and nanostructures, gated diodes and SOI devices produced by a variety of techniques. The last part reviews future prospects for SOI structures, analyzing wafer bonding techniques, applications of oxidized porous silicon, semi-insulating silicon materials, self-organization of silicon dots and wires on SOI and some new physical phenomena.

Ordering Phenomena in Rare-Earth Nickelate Heterostructures (Hardcover, 1st ed. 2017): Matthias Hepting Ordering Phenomena in Rare-Earth Nickelate Heterostructures (Hardcover, 1st ed. 2017)
Matthias Hepting
R3,458 Discovery Miles 34 580 Ships in 12 - 19 working days

This thesis presents an experimental study of ordering phenomena in rare-earth nickelate-based heterostructures by means of inelastic Raman light scattering and elastic resonant x-ray scattering (RXS). Further, it demonstrates that the amplitude ratio of magnetic moments at neighboring nickel sites can be accurately determined by RXS in combination with a correlated double cluster model, and controlled experimentally through structural pinning of the oxygen positions in the crystal lattice. The two key outcomes of the thesis are: (a) demonstrating full control over the charge/bond and spin order parameters in specifically designed praseodymium nickelate heterostructures and observation of a novel spin density wave phase in absence of the charge/bond order parameter, which confirms theoretical predictions of a spin density wave phase driven by spatial confinement of the conduction electrons; and (b) assessing the thickness-induced crossover between collinear and non-collinear spin structures in neodymium nickelate slabs, which is correctly predicted by drawing on density functional theory.

Self-standing Substrates - Materials and Applications (Hardcover, 1st ed. 2020): Inam Uddin, Rajender Boddula, Abdullah M. Asiri Self-standing Substrates - Materials and Applications (Hardcover, 1st ed. 2020)
Inam Uddin, Rajender Boddula, Abdullah M. Asiri
R4,402 Discovery Miles 44 020 Ships in 10 - 15 working days

This book systematically describes free-standing films and self-supporting nanoarrays growing on rigid and flexible substrates, and discusses the numerous applications in electronics, energy generation and storage in detail. The chapters present the various fabrication techniques used for growing self-supporting materials on flexible and rigid substrates, and free-standing films composed of semiconductors, inorganic, polymer and carbon hybrid materials.

Positron Annihilation in Semiconductors - Defect Studies (Hardcover, 1st ed. 1999. Corr. 2nd printing 2003): Reinhard... Positron Annihilation in Semiconductors - Defect Studies (Hardcover, 1st ed. 1999. Corr. 2nd printing 2003)
Reinhard Krause-Rehberg, Hartmut S. Leipner
R5,807 Discovery Miles 58 070 Ships in 10 - 15 working days

This comprehensive book reports on recent investigations of lattice imperfections in semiconductors by means of positron annihilation. It reviews positron techniques, and describes the application of these techniques to various kinds of defects, such as vacancies, impurity vacancy complexes and dislocations.

Data Transmission at Millimeter Waves - Exploiting the 60 GHz Band on Silicon (Hardcover, 2015 ed.): Khaled Khalaf, Vojkan... Data Transmission at Millimeter Waves - Exploiting the 60 GHz Band on Silicon (Hardcover, 2015 ed.)
Khaled Khalaf, Vojkan Vidojkovic, Piet Wambacq, John R. Long
R2,862 Discovery Miles 28 620 Ships in 10 - 15 working days

This book describes the design of a receiver front-end circuit for operation in the 60GHz range in 90nm CMOS. Physical layout of the test circuit and post-layout simulations for the implementation of a test chip including the QVCO and the first stage divider are also presented. The content of this book is particularly of interest to those working on mm-wave frequency generation and signal reception.

Regular Nanofabrics in Emerging Technologies - Design and Fabrication Methods for Nanoscale Digital Circuits (Hardcover,... Regular Nanofabrics in Emerging Technologies - Design and Fabrication Methods for Nanoscale Digital Circuits (Hardcover, Edition.)
M. Haykel Ben Jamaa
R4,355 Discovery Miles 43 550 Ships in 10 - 15 working days

Regular Nanofabrics in Emerging Technologies gives a deep insight into both fabrication and design aspects of emerging semiconductor technologies, that represent potential candidates for the post-CMOS era. Its approach is unique, across different fields, and it offers a synergetic view for a public of different communities ranging from technologists, to circuit designers, and computer scientists. The book presents two technologies as potential candidates for future semiconductor devices and systems and it shows how fabrication issues can be addressed at the design level and vice versa. The reader either for academic or research purposes will find novel material that is explained carefully for both experts and non-initiated readers. Regular Nanofabrics in Emerging Technologies is a survey of post-CMOS technologies. It explains processing, circuit and system level design for people with various backgrounds.

Utilization of Renormalized Mean-Field Theory upon Novel Quantum Materials (Hardcover, 1st ed. 2019): Wei-Lin Tu Utilization of Renormalized Mean-Field Theory upon Novel Quantum Materials (Hardcover, 1st ed. 2019)
Wei-Lin Tu
R2,873 Discovery Miles 28 730 Ships in 10 - 15 working days

This book offers a new approach to the long-standing problem of high-Tc copper-oxide superconductors. It has been demonstrated that starting from a strongly correlated Hamiltonian, even within the mean-field regime, the "competing orders" revealed by experiments can be achieved using numerical calculations. In the introduction, readers will find a brief review of the high-Tc problem and the unique challenges it poses, as well as a comparatively simple numerical approach, the renormalized mean-field theory (RMFT), which provides rich results detailed in the following chapters. With an additional phase picked up by the original Hamiltonian, some behaviors of interactive fermions under an external magnetic field, which have since been experimentally observed using cold atom techniques, are also highlighted.

High-Field Transport in Semiconductor Superlattices (Hardcover, 2003 ed.): Karl Leo High-Field Transport in Semiconductor Superlattices (Hardcover, 2003 ed.)
Karl Leo
R3,020 Discovery Miles 30 200 Ships in 10 - 15 working days

The purpose of this book is to review the current state of this quickly developing field. Up until now, there has been no concise review available of the rather diverse aspects of this field. This book gives a basic introduction to the concepts behind Bloch oscillations. It describes how the physics of high field transport has been investigated through a broad range of experimental techniques such as interband and intraband optical spectroscopy and transport experiments. Possible applications and further trends are also discussed.

Methods of the Alignment-Relay Technique for Nanosystems - Optimization and Innovation (Hardcover, 1st ed. 2021): Monika Snowdon Methods of the Alignment-Relay Technique for Nanosystems - Optimization and Innovation (Hardcover, 1st ed. 2021)
Monika Snowdon
R5,607 Discovery Miles 56 070 Ships in 10 - 15 working days

This thesis addresses the problem of improving the alignment of carbon nanotubes (CNTs) in transistor applications, taking a unique approach using iptycenes acting as molecular tweezers in combination with a liquid crystal solvent. As part of a project to test the effectiveness of a multi-step method, the so-called Alignment Relay Technique (ART), this work contributed evidence for the selectivity and stability of ART, as well as providing the first proof-of-concept that ART can be used to create CNT field-effect transistors (FETs). The thesis effectively explains and illustrates the chemical synthesis of the tweezers, the concept and actualization of the technique, the various factors observed to influence deposition and selectivity, along with material fabrication using both photolithography and electron beam lithography. This research advances knowledge of transistors and expands the applications of small organic molecules in the field of materials science. Particular highlights of this thesis include: an extensive review of ART, its advantages, and limitations; development of new material chemistry methods for the optimization of semiconducting CNT selectivity; and a comprehensive exploration of fabrication and characterization of CNTFETs for future applications.

Ferroelectric Thin Films - Basic Properties and Device Physics for Memory Applications (Hardcover, 2005 ed.): Masanori Okuyama,... Ferroelectric Thin Films - Basic Properties and Device Physics for Memory Applications (Hardcover, 2005 ed.)
Masanori Okuyama, Yoshihiro Ishibashi
R5,726 Discovery Miles 57 260 Ships in 10 - 15 working days

Ferroelectric thin films continue to attract much attention due to their developing applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. The contributing authors are acknowledged experts in the field.

Strain Effect in Semiconductors - Theory and Device Applications (Hardcover, 2010 ed.): Yongke Sun, Scott E. Thompson,... Strain Effect in Semiconductors - Theory and Device Applications (Hardcover, 2010 ed.)
Yongke Sun, Scott E. Thompson, Toshikazu Nishida
R4,556 Discovery Miles 45 560 Ships in 10 - 15 working days

Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive MEMS transducers. Discusses relevant applications of strain while also focusing on the fundamental physics pertaining to bulk, planar, and scaled nano-devices. Hence, this book is relevant for current strained Si logic technology as well as for understanding the physics and scaling for future strained nano-scale devices.

Metal Impurities in Silicon- and Germanium-Based Technologies - Origin, Characterization, Control, and Device Impact... Metal Impurities in Silicon- and Germanium-Based Technologies - Origin, Characterization, Control, and Device Impact (Hardcover, 1st ed. 2018)
Cor Claeys, Eddy Simoen
R4,951 Discovery Miles 49 510 Ships in 12 - 19 working days

This book provides a unique review of various aspects of metallic contamination in Si and Ge-based semiconductors. It discusses all of the important metals including their origin during crystal and/or device manufacturing, their fundamental properties, their characterization techniques and their impact on electrical devices' performance. Several control and possible gettering approaches are addressed. The book offers a valuable reference guide for all researchers and engineers studying advanced and state-of-the-art micro- and nano-electronic semiconductor devices and circuits. Adopting an interdisciplinary approach, it combines perspectives from e.g. material science, defect engineering, device processing, defect and device characterization, and device physics and engineering.

Ultrafast Phenomena in Semiconductors (Hardcover, 2001 ed.): Kong-Thon Tsen Ultrafast Phenomena in Semiconductors (Hardcover, 2001 ed.)
Kong-Thon Tsen
R4,650 Discovery Miles 46 500 Ships in 10 - 15 working days

This book deals with optical properties of semiconductors at extremely short (pico- and femtosecond) time scales. The contributions, by an international roster of researchers, cover current research on a wide array of topics.Topics covered include: 1. Coherent Dynamics of Photoexcited Semiconductor Superlattices with Applied Homogeneous Electric Fields (Koch,Meier,Thomas) 2. Ultrafast non-equilibrium dynamics of intersubband excitations in quasi two dimensional semiconductors (Elsaesser,Woerner MPI Berlin) 3. Bloch-Oscillations in Semiconductors: Principles and Applications (Leo, TU Dresden) 4. Electron-velocity overshoot, electron ballistic transport and nonequilibrium phonon dynamics in nanostructure semiconductors (Tsen, Arizona State) 5. Coherent Control of Photocurrents in Semiconductors (Van Driel,Sipe U Toronto ) 6. Ensemble Monte Carlo Simulations of Ultrafast Phenomena in Semiconductors (Ferry & Goodnick, Arizona State) 7. Theory of Coherent Phonon Oscillations in Bulk GaAs (Stanton & Kuznetsov, U Florida) 8.Coherent Spectroscopy on Quantum Wires (Forchel, Bayer, & Bacher, U Wuerzburg) 9. The Vectorial Dynamics of Coherent Emission from Excitions (Smirl, U Iowa)

Angle-Resolved Photoemission Spectroscopy on High-Temperature Superconductors - Studies of Bi2212 and Single-Layer FeSe Film... Angle-Resolved Photoemission Spectroscopy on High-Temperature Superconductors - Studies of Bi2212 and Single-Layer FeSe Film Grown on SrTiO3 Substrate (Hardcover, 1st ed. 2016)
Junfeng He
R3,435 Discovery Miles 34 350 Ships in 12 - 19 working days

This book mainly focuses on the study of the high-temperature superconductor Bi2Sr2CaCu2O8+ (Bi2212) and single-layer FeSe film grown on SrTiO3 (STO) substrate by means of angle-resolved photoemission spectroscopy (ARPES). It provides the first electronic evidence for the origin of the anomalous high-temperature superconductivity in single-layer FeSe grown on SrTiO3 substrate. Two coexisted sharp-mode couplings have been identified in superconducting Bi2212. The first ARPES study on single-layer FeSe/STO films has provided key insights into the electronic origin of superconductivity in this system. A phase diagram and electronic indication of high Tc and insulator to superconductor crossover have been established in the single-layer FeSe/STO films. Readers will find essential information on the techniques used and interesting physical phenomena observed by ARPES.

International Workshop on Superconducting Nano-Electronics Devices - SNED Proceedings, Naples, Italy, May 28-June 1, 2001... International Workshop on Superconducting Nano-Electronics Devices - SNED Proceedings, Naples, Italy, May 28-June 1, 2001 (Hardcover, 2002 ed.)
Jukka Pekola, Berardo Ruggiero, Paolo Silvestrini
R3,091 Discovery Miles 30 910 Ships in 10 - 15 working days

Thisvolumereportsthemajorpartofthescientificcontributionsofthefirstinternational workshoponSuperconductingNano-ElectronicsDevices(SNED)heldinNapoli,Italy,at theendofMay2001. Theaimoftheworkshopwastofocusonrecentexperimentalandtheoreticalresultsin thefieldofsuperconductingnano-electronicsdevices. Itcombinedphysicswithpresent andfuturetechnologicalapplications:bothfundamentalandappliedaspectswerecovered. SpecialemphasiswasgiventoquantumcoherenceandcomputationusingsmallJosephson junctions,noiseinultrasensitivenanodevicesandpossibilitiesofmakinguseofsupercon- ductivityinvariouson-chipdevices. Withtheseattributesandwithrecognizedinvited speakersintheirspecialtiestheworkshopmanagedtobringtogetheracollectionof scientistsfromnearbybutdistinctresearchcommunities. Thiswaytheatmosphereofthe workshopbecameveryopenanddiscussionswerelivelybothduringandoutsidethe sessions. Thisfreshdiscussionhopefullygaveeveryparticipantalotofnewideasfor furtherworkbackintheirhomeinstitutes. OneofthecentraltopicsintheworkshopwastheuseofdifferentJosephsonjunction configurationsasimplementationsofquantumbits. Atthetimeoftheworkshopwewere justwaitingforthesecondwaveofbreakthroughsinthisfield:theresultsemergingfrom theparticipatinglaboratoriesoftheworkshopjustatthetimeofthewritingofthispreface perhapsalsoprovetheusefulnessofourworkshop. Anotherfocuswasonvarioustopicsrelatedtoultrasensativedetectors. Theybring quantumlimitationstoapplications,andmanydeviceconceptsareresultsofunderstanding fundamentalandexcitingphenomenainsuperconductivity. Noiseandon-chipcooling wereexplicitlydiscussedinthedetectorsessionsaswell. ThechoiceofthelocationrecognizestheroleandthetraditionsofNapoliespeciallyin thefieldofmacroscopicquantumcoherence,oneofthemainissuesoftheworkshop. It furtherguaranteedtheparticipantsastimulatingatmosphereatthemeeting. Inconclusion,wewishtothanktheIstitutoItalianopergliStudiFilosofici,theIstituto diCiberneticadelConsiglioNazionaledelleRicerche,theUniversityofJyviiskylii,the IstitutoNazionalediFisicaNucleare,theIstitutoNazionalediFisicadellaMateria,the DipartimentoScienzeFisiche,andtheRettoratodell'UniversitadiNapoli"FedericoII" fortheirsupport. ThanksarealsoduetoAirLiquide,CRY,Nanoway,OxfordInstruments, andRaith. ThisinitiativeisintheframeoftheinternationalactivityofMQC2Association on"MacroscopicQuantumCoherenceandComputing. "WeareindebtedtoC. Granata v vi PREFACE and V. Coratoforscientificassistance,andtoF. Caiazzo,E. DeGrazia,andA. M. Mazzarellafortheirvaluableassistanceinallthetasksconnectedtotheorganizationofthe Workshop. WearealsogratefultoL. Longobardi,A. Monaco,S. Piscitelli,andS. Rombetto forhintsandhelpduringtheWorkshop. ThanksareduetoL. DeFelice,S. Luongo,and V. Sindonifortheorganizationofthesocialevent. J. Pekola B. Ruggiero P. Silvestrini CONTENTS QuantumNondemolitionMeasurementsofaQubit . D. V. Averin BayesianQuantumMeasurementofaSingle-Cooper-PairQubit 11 A. Korotkov lIfNoiseinJosephsonQubits 15 E. Paladino, L. Faoro,G. Falci,and R. Fazio SwitchingCurrentsandQuasi-ParticlePoisoningintheSuperconducting SingleElectronTransistor 25 P. Agren,J. Walter,V. Sch611mann,andD. B. Haviland JosephsonSystemsforQuantumCoherenceExperiments 33 V. Corato,C. Granata, L. Longobardi,M. Russo,B. Ruggiero, andP. Silvestrini SolidStateAnalogueofDoubleSlitInterferometer...43 K. Yu. Arutyunov, T. T. Hongisto,andJ. P. Pekola NoiseandMicrowavePropertiesofSET-Transistors...53 M. Ejrnres,M. T. Savolainen,andJ. Mygind UseofSmallThnnelJunctionsOperatingatT=0. 3K 63 R. Leoni,M. G. Castellano,F. Chiarello,andG. Torrioli AHystericSingleCooperPairTransistorforSingleShotReadingof 73 aCharge-Qubit A. Cottet,D. Vion,P. Joyez,D. Esteve,andM. H. Devoret SingleCooperPairElectrometerBasedonaRadio-Frequency-SQUID Scheme 87 A. B. Zorin vii viii CONTENTS PossibilityofSingle-ElectronDevicesandSuperconductingCoherence 97 Yu. A. Pashkin, Y. Nakamura,T. Yamamoto,andJ. S. Tsai Frequency-LockedCurrentofCooperPairsinSuperconductingSingle ElectronTransistorwithOhmicResistor...105 S. V. Lotkhov,S. A. Bogoslovsky, A. B. Zorin,andJ. Niemeyer SetupforExperimentsontheSupercurrent-PhaseRelationinBloch Transistors-StatusandPossibleApplications 115 M. Gotz, V. V. Khanin, A. B. Zorin,E. Il'ichev,S. A. Bogoslovsky, andJ. Niemeyer Single-ElectronTransistorsintheRegimeofHighConductance...123 C. Wallisser,B;Limblach,P. yomStein,and R. Schiifer SuperconductingTransistor-EdgeSensorsforTime&EnergyResolved Single-PhotonCountersandforDarkMatterSearches 133 B. Cabrera OptimizationoftheHot-ElectronBolometerandaCascadeQuasiparticle 145 L. Kuzrnin NoiseinRefrigeratingTunnelJunctionsandinMicrobolometers...153 D. V. Anghel NonequilibriumQuasiparticlesandElectronCoolingbyNormalMetal- SuperconductorTunnelJunctions...165 D. Golubevand A. Vasenko MesoscopicJosephsonJunctionsCoupledtoWeakCoherentFields: AnExampleofReciprocalDetection 175 R. Miglioreand A. Messina DynamicsofSuperconductingInterferometersContainingPi-Junctions 183 V. K. Kornev, I. I. Soloviev, I. V. Borisenko,P. B. Mozhaev, andG. A.

The Materials Science of Semiconductors (Hardcover, 2008 ed.): Angus Rockett The Materials Science of Semiconductors (Hardcover, 2008 ed.)
Angus Rockett
R4,045 R3,352 Discovery Miles 33 520 Save R693 (17%) Ships in 12 - 19 working days

This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems.

Oxide Materials at the Two-Dimensional Limit (Hardcover, 1st ed. 2016): Falko P. Netzer, Alessandro Fortunelli Oxide Materials at the Two-Dimensional Limit (Hardcover, 1st ed. 2016)
Falko P. Netzer, Alessandro Fortunelli
R4,307 R3,737 Discovery Miles 37 370 Save R570 (13%) Ships in 12 - 19 working days

This book summarizes the current knowledge of two-dimensional oxide materials. The fundamental properties of 2-D oxide systems are explored in terms of atomic structure, electronic behavior and surface chemistry. The concept of polarity in determining the stability of 2-D oxide layers is examined, charge transfer effects in ultrathin oxide films are reviewed as well as the role of defects in 2-D oxide films. The novel structure concepts that apply in oxide systems of low dimensionality are addressed, and a chapter giving an overview of state-of-the-art theoretical methods for electronic structure determination of nanostructured oxides is included. Special emphasis is given to a balanced view from the experimental and the theoretical side. Two-dimensional materials, and 2-D oxides in particular, have outstanding behavior due to dimensionality and proximity effects. Several chapters treat prototypical model systems as illustrative examples to discuss the peculiar physical and chemical properties of 2-D oxide systems. The chapters are written by renowned experts in the field.

Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates (Hardcover, 1995 ed.): K. Eberl,... Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates (Hardcover, 1995 ed.)
K. Eberl, Pierre M Petroff, Piet Demeester
R5,811 Discovery Miles 58 110 Ships in 10 - 15 working days

Significant experimental work is devoted to the preparation of one and zero dimensional semiconductor structures in view of future electronic and optical devices which involve quantum effects. The aim is good control in the realisation of nanometer structures both in vertical and lateral direction. Conventional processing techniques based on lithography face inherent problems such as limited resolution and surface defects caused by reactive ion etching. During the last few years several research groups started working on direct syntheses of semiconductor nanostructures by combining epitaxial growth techniques such as molecular beam epitaxy and chemical vapour deposition with pre patterning of the substrate wafers. Another idea is based on island formation in strained layer heteroepitaxy. Zero and one dimensional structures with dimensions down to a few atomic distances have been realised this way. An important point is that the size of the quantum structures is controlled within the epitaxial deposition in a self-adjusting process. The main subjects of the book are: Theoretical aspects of epitaxial growth, selfassembling nanostructures and cluster formation, epitaxial growth in tilted and non-(001) surfaces, cleaved edge overgrowth, nanostructure growth on patterned silicon substrates, nanostructures prepared by selective area epitaxy or growth on patterned substrates, in-situ etching and device applications based on epitaxial regrowth on patterned substrates. The experimental work mainly concentrated on GaAs/A1GaAs, GaAs/InGaAs, InGaP/InP and Si/SiGe based semiconductor heterostructures. Growth related problems received special attention. The different concepts for preparation of low dimensional structures are presented to allow direct comparison and to identify new concepts for future research work.

Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices (Hardcover, 1998 ed.): M. Balkanski,... Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices (Hardcover, 1998 ed.)
M. Balkanski, Nikolai Andreev
R5,758 Discovery Miles 57 580 Ships in 10 - 15 working days

The major thrust of this book is the realisation of an all optical computer. To that end it discusses optoelectronic devices and applications, transmission systems, integrated optoelectronic systems and, of course, all optical computers. The chapters on heterostructure light emitting devices' quantum well carrier transport optoelectronic devices' present the most recent advances in device physics, together with modern devices and their applications. The chapter on microcavity lasers' is essential to the discussion of present and future developments in solid-state laser physics and technology and puts into perspective the present state of research into and the technology of optoelectronic devices, within the context of their use in advanced systems. A significant part of the book deals with problems of propagation in quantum structures. soliton-based switching, gating and transmission systems' presents the basics of controlling the propagation of photons in solids and the use of this control in devices. The chapters on optoelectronic processing using smart pixels' and all optical computers' are preceded by introductory material in fundamentals of quantum structures for optoelectronic devices and systems' and linear and nonlinear absorption and reflection in quantum well structures'. It is clear that new architectures will be necessary if we are to fully utilise the potentiality of electrooptic devices in computing, but even current architectures and structures demonstrate the feasibility of the all optical computer: one that is possible today.

Compound Semiconductors Strained Layers and Devices (Hardcover, 2000 ed.): Suresh Jain, Magnus Willander, R. Van Overstraeten Compound Semiconductors Strained Layers and Devices (Hardcover, 2000 ed.)
Suresh Jain, Magnus Willander, R. Van Overstraeten
R4,550 Discovery Miles 45 500 Ships in 10 - 15 working days

During the last 25 years (after the growth of the first pseudomorphic GeSi strained layers on Si by Erich Kasper in Germany) we have seen a steady accu- mulation of new materials and devices with enhanced performance made pos- sible by strain. 1989-1999 have been very good years for the strained-Iayer- devices. Several breakthroughs were made in the growth and doping technology of strained layers. New devices were fabricated as a results of these break- throughs. Before the advent of strain layer epitaxy short wavelength (violet to green) and mid-IR (2 to 5 f. Lm) regions of the spectrum were not accessi- ble to the photonic devices. Short wavelength Light Emitting Diodes (LEDs) and Laser Diodes (LDs) have now been developed using III-Nitride and II-VI strained layers. Auger recombination increases rapidly as the bandgap narrows and temperature increases. Therefore it was difficult to develop mid-IR (2 to 5 f. Lm range) lasers. The effect of strain in modifying the band-structure and suppressing the Auger recombination has been most spectacular. It is due to the strain mediated band-structure engineering that mid-IR lasers with good per- formance have been fabricated in several laboratories around the world. Many devices based on strained layers have reached the market place. This book de- scribes recent work on the growth, characterization and properties o(compound semiconductors strained layers and devices fabricated using them.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Palestine Laboratory - How Israel…
Antony Loewenstein Paperback R300 R277 Discovery Miles 2 770
Nasty Women Talk Back - Feminist Essays…
Joy Watson Paperback  (2)
R444 Discovery Miles 4 440
A Russian On Commando - The Boer War…
Boris Gorelik Paperback R300 R268 Discovery Miles 2 680
Rebels And Rage - Reflecting On…
Adam Habib Paperback R589 Discovery Miles 5 890
Moord Op Stellenbosch - Twee Dekades Se…
Julian Jansen Paperback R360 R337 Discovery Miles 3 370
Don't Upset ooMalume - A Guide To…
Hombakazi Mercy Nqandeka Paperback R280 R250 Discovery Miles 2 500
Churchill & Smuts - The Friendship
Richard Steyn Paperback  (6)
R310 R277 Discovery Miles 2 770
Killing Karoline - A Memoir
Sara-Jayne King Paperback  (1)
R325 R305 Discovery Miles 3 050
Into A Raging Sea - Great South African…
Tony Weaver, Andrew Ingram Paperback  (2)
R579 Discovery Miles 5 790
Crossroads - I Live Where I Like
Koni Benson Paperback R280 R259 Discovery Miles 2 590

 

Partners