![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
The main purpose of this book is to provide a comprehensive treatment of the materials aspects of group-IV, III-V and II-VI semiconductor alloys used in various electronic and optoelectronic devices. The topics covered in this book include the structural, thermal, mechanical, lattice vibronic, electronic, optical and carrier transport properties of such semiconductor alloys. The book reviews not only commonly known alloys (SiGe, AlGaAs, GaInPAs, and ZnCdTe) but also new alloys, such as dilute-carbon alloys (CSiGe, CSiSn, etc.), III-N alloys, dilute-nitride alloys (GaNAs and GaInNAs) and Mg- or Be-based II-VI semiconductor alloys. Finally there is an extensive bibliography included for those who wish to find additional information as well as tabulated values and graphical information on the properties of semiconductor alloys.
This thesis describes novel devices for the secure identification of objects or electronic systems. The identification relies on the the atomic-scale uniqueness of semiconductor devices by measuring a macroscopic quantum property of the system in question. Traditionally, objects and electronic systems have been securely identified by measuring specific characteristics: common examples include passwords, fingerprints used to identify a person or an electronic device, and holograms that can tag a given object to prove its authenticity. Unfortunately, modern technologies also make it possible to circumvent these everyday techniques. Variations in quantum properties are amplified by the existence of atomic-scale imperfections. As such, these devices are the hardest possible systems to clone. They also use the least resources and provide robust security. Hence they have tremendous potential significance as a means of reliably telling the good guys from the bad.
This book introduces readers to electric circuits with variable loads and voltage regulators. It defines invariant relationships for numerous parameters, and proves the concepts characterizing these circuits. Moreover, the book presents the fundamentals of electric circuits and develops circuit theorems, while also familiarizing readers with generalized equivalent circuits and using projective geometry to interpret changes in operating regime parameters. It provides useful expressions for normalized regime parameters and changes in them, as well as convenient formulas for calculating currents. This updated and extended third edition features new chapters on the use of invariant properties in two-port circuits, invariant energy characteristics for limited single-valued two-port circuits, and on testing projective coordinates. Given its novel geometrical approach to real electrical circuits, the book offers a valuable guide for engineers, researchers, and graduate students who are interested in basic electric circuit theory and the regulation and monitoring of power supply systems.
This book focuses on the topological fermion condensation quantum phase transition (FCQPT), a phenomenon that reveals the complex behavior of all strongly correlated Fermi systems, such as heavy fermion metals, quantum spin liquids, quasicrystals, and two-dimensional systems, considering these as a new state of matter. The book combines theoretical evaluations with arguments based on experimental grounds demonstrating that the entirety of very different strongly correlated Fermi systems demonstrates a universal behavior induced by FCQPT. In contrast to the conventional quantum phase transition, whose physics in the quantum critical region are dominated by thermal or quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT are controlled by a system of quasiparticles resembling the Landau quasiparticles. The book discusses the modification of strongly correlated systems under the action of FCQPT, representing the "missing" instability, which paves the way for developing an entirely new approach to condensed matter theory; and presents this physics as a new method for studying many-body objects. Based on the authors' own theoretical investigations, as well as salient theoretical and experimental studies conducted by others, the book is well suited for both students and researchers in the field of condensed matter physics.
This thesis develops new techniques for simulating the low-energy behaviour of quantum spin systems in one and two dimensions. Combining these developments, it subsequently uses the formalism of tensor network states to derive an effective particle description for one- and two-dimensional spin systems that exhibit strong quantum correlations. These techniques arise from the combination of two themes in many-particle physics: (i) the concept of quasiparticles as the effective low-energy degrees of freedom in a condensed-matter system, and (ii) entanglement as the characteristic feature for describing quantum phases of matter. Whereas the former gave rise to the use of effective field theories for understanding many-particle systems, the latter led to the development of tensor network states as a description of the entanglement distribution in quantum low-energy states.
This book develops a methodology for the real-time coupled quantum dynamics of electrons and phonons in nanostructures, both isolated structures and those open to an environment. It then applies this technique to both fundamental and practical problems that are relevant, in particular, to nanodevice physics, laser-matter interaction, and radiation damage in living tissue. The interaction between electrons and atomic vibrations (phonons) is an example of how a process at the heart of quantum dynamics can impact our everyday lives. This is e.g. how electrical current generates heat, making your toaster work. It is also a key process behind many crucial problems down to the atomic and molecular scale, such as the functionality of nanoscale electronic devices, the relaxation of photo-excited systems, the energetics of systems under irradiation, and thermoelectric effects. Electron-phonon interactions represent a difficult many-body problem. Fairly standard techniques are available for tackling cases in which one of the two subsystems can be treated as a steady-state bath for the other, but determining the simultaneous coupled dynamics of the two poses a real challenge. This book tackles precisely this problem.
The exploding number of uses for ultrafast, ultrasmall integrated
circuits has increased the importance of hot-carrier effects in
manufacturing as well as for other technological applications. They
are rapidly movingout of the research lab and into the real
world.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science, topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications. To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.
This book presents a new approach to the study of physical nonlinear circuits and advanced computing architectures with memristor devices. Such a unified approach to memristor theory has never been systematically presented in book form. After giving an introduction on memristor-based nonlinear dynamical circuits (e.g., periodic/chaotic oscillators) and their use as basic computing analogue elements, the authors delve into the nonlinear dynamical properties of circuits and systems with memristors and present the flux-charge analysis, a novel method for analyzing the nonlinear dynamics starting from writing Kirchhoff laws and constitutive relations of memristor circuit elements in the flux-charge domain. This analysis method reveals new peculiar and intriguing nonlinear phenomena in memristor circuits, such as the coexistence of different nonlinear dynamical behaviors, extreme multistability and bifurcations without parameters. The book also describes how arrays of memristor-based nonlinear oscillators and locally-coupled neural networks can be applied in the field of analog computing architectures, for example for pattern recognition. The book will be of interest to scientists and engineers involved in the conceptual design of physical memristor devices and systems, mathematical and circuit models of physical processes, circuits and networks design, system engineering, or data processing and system analysis.
This book relates the recent developments in several key electrical engineering R&D labs, concentrating on power electronics switches and their use. The first sections deal with key power electronics technologies, MOSFETs and IGBTs, including series and parallel associations. The next section examines silicon carbide and its potentiality for power electronics applications and its present limitations. Then, a dedicated section presents the capacitors, key passive components in power electronics, followed by a modeling method allowing the stray inductances computation, necessary for the precise simulation of switching waveforms. Thermal behavior associated with power switches follows, and the last part proposes some interesting prospectives associated to Power Electronics integration.
This practical, comprehensive book introduces both semiconductors and integrated optics at a fundamental level, and provides in-depth derivations and analysis of key integrated optical components for more advanced study. Written from an engineer's point of view, the book emphasizes practical application; the author develops and explains the concepts and techniques needed to solve real-world problems and to understand the engineering issues involved. The book first discusses semiconductor optical material systems and then addresses the waveguide in depth. Next, it covers active devices such as lasers, modulators and detectors. Finally, there is a survey of integration and hybridization, plus the development of photonic integrated circuits. With its clear explanations and design examples, the book provides both experienced and budding engineers with the information necessary to design both the structure and fabrication process of a semiconductor integrated optical device.
This book presents a comprehensive account of the phenomenon of spontaneous ordering. The phenomenon, which can be categorized as a self-organized process, is observed to occur spontaneously during epitaxial growth of certain ternary alloy semiconductors and results in a modification of their structural, electronic, and optical properties. There has been a great deal of interest in learning how to control this phenomenon so that it may be used for tailoring desirable electronic and optical properties. There has been even greater interest in exploiting the phenomenon for its unique ability to provide an experimental environment of controlled alloy statistical fluctuations. As such, it impacts areas of semiconductor science and technology related to the materials science of epitaxial growth, statistical mechanics, and electronic structure of alloys and electronic and photonic devices. During the past two decades, significant progress has been made toward understanding the mechanisms that drive this phenomenon and the changes in physical properties that result from it. A variety of experimental techniques have been used to probe the phenomenon and several attempts made at providing theoretical models, both for the ordering mechanisms as well as electronic structure changes. The various chapters of this book provide a detailed account of these efforts during the past decade.
This book provides a comprehensive overview of the state-of-the-art in the development of semiconductor nanostructures and nanophotonic devices. It covers epitaxial growth processes for GaAs- and GaN-based quantum dots and quantum wells, describes the fundamental optical, electronic, and vibronic properties of nanomaterials, and addresses the design and realization of various nanophotonic devices. These include energy-efficient and high-speed vertical cavity surface emitting lasers (VCSELs) and ultra-small metal-cavity nano-lasers for applications in multi-terabus systems; silicon photonic I/O engines based on the hybrid integration of VCSELs for highly efficient chip-to-chip communication; electrically driven quantum key systems based on q-bit and entangled photon emitters and their implementation in real information networks; and AlGaN-based deep UV laser diodes for applications in medical diagnostics, gas sensing, spectroscopy, and 3D printing. The experimental results are accompanied by reviews of theoretical models that describe nanophotonic devices and their base materials. The book details how optical transitions in the active materials, such as semiconductor quantum dots and quantum wells, can be described using a quantum approach to the dynamics of solid-state electrons under quantum confinement and their interaction with phonons, as well as their external pumping by electrical currents. With its broad and detailed scope, this book is indeed a cutting-edge resource for researchers, engineers and graduate-level students in the area of semiconductor materials, optoelectronic devices and photonic systems.
This is an overview of different models and mechanisms developed to describe the capture and relaxation of carriers in quantum-dot systems. Despite their undisputed importance, the mechanisms leading to population and energy exchanges between a quantum dot and its environment are not yet fully understood. The authors develop a first-order approach to such effects, using elementary quantum mechanics and an introduction to the physics of semiconductors. The book results from a series of lectures given by the authors at the Master's level.
This book covers virtually all aspects of semiconductor nanowires, from growth to related applications, in detail. First, it addresses nanowires' growth mechanism, one of the most important topics at the forefront of nanowire research. The focus then shifts to surface functionalization: nanowires have a high surface-to-volume ratio and thus are well-suited to surface modification, which effectively functionalizes them. The book also discusses the latest advances in the study of impurity doping, a crucial process in nanowires. In addition, considerable attention is paid to characterization techniques such as nanoscale and in situ methods, which are indispensable for understanding the novel properties of nanowires. Theoretical calculations are also essential to understanding nanowires' characteristics, particularly those that derive directly from their special nature as one-dimensional nanoscale structures. In closing, the book considers future applications of nanowire structures in devices such as FETs and lasers.
This thesis experimentally demonstrates the much discussed electronic charge-glass states in solids. It focuses on quasi-two-dimensional organic conductors of the -(BEDT-TTF)2X family, which form anisotropic triangular lattices, and examines their electronic properties using various measurements: resistivity, time-resolved electric transport, X-ray diffraction analysis, and nuclear magnetic resonance spectroscopy. The hallmark of the charge glass caused by geometrical frustration of lattice structure for those materials is successfully observed for the first time. The thesis provides new insights into the exotic properties of matter driven by strong electron correlations and crystalline frustration. The introduction enables beginners to understand fundamentals of the charge-glass states and the organic-conductor family -(BEDT-TTF)2X. The comprehensive and detailed descriptions of the experimental demonstration make this a valuable resource.
This book introduces a novel Ti-Sb-Te alloy for high-speed and low-power phase-change memory applications, which demonstrates a phase-change mechanism that differs significantly from that of conventional Ge2Sb2Te5 and yields favorable overall performance. Systematic methods, combined with better material characteristics, are used to optimize the material components and device performance. Subsequently, a phase-change memory chip based on the optimized component is successfully fabricated using 40-nm complementary metal-oxide semiconductor technology, which offers a number of advantages in many embedded applications.
This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range. Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry-Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic. A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.
This book presents a collection of invited research and review contributions on recent advances in (mainly) theoretical condensed matter physics, theoretical chemistry, and theoretical physics. The volume celebrates the 90th birthday of N.H. March (Emeritus Professor, Oxford University, UK), a prominent figure in all of these fields. Given the broad range of interests in the research activity of Professor March, who collaborated with a number of eminent scientists in physics and chemistry, the volume embraces quite diverse topics in physics and chemistry, at various dimensions and energy scales. One thread connecting all these topics is correlation in aggregated states of matter, ranging from nuclear physics to molecules, clusters, disordered condensed phases such as the liquid state, and solid state physics, and the various phase transitions, both structural and electronic, occurring therein. A final chapter leaps to an even larger scale of matter aggregation, namely the universe and gravitation. A further no less important common thread is methodological, with the application of theoretical physics and chemistry, particularly density functional theory and statistical field theory, to both nuclear and condensed matter.
A new experimental method - the "Stiffnessometer", is developed to measure elementary properties of a superconductor, including the superconducting stiffness and the critical current. This technique has many advantages over existing methods, such as: the ability to measure these properties while minimally disturbing the system; the ability to measure large penetration depths (comparable to sample size), as necessary when approaching the critical temperature; and the ability to measure critical currents without attaching contacts and heating the sample. The power of this method is demonstrated in a study of the penetration depth of LSCO, where striking evidence is found for two separate critical temperatures for the in-plane and out-of-plane directions. The results in the thesis are novel, important and currently have no theoretical explanation. The stiffnessometer in a tool with great potential to explore new grounds in condensed matter physics.
This book gives a readable introduction to the important, rapidly developing, field of nanophotonics. It provides a quick understanding of the basic elements of the field, allowing students and newcomers to progress rapidly to the frontiers of their interests. Topics include: The basic mathematical techniques needed for the study of the materials of nanophotonic technology; photonic crystals and their applications as laser resonators, waveguides, and circuits of waveguides; the application of photonic crystals technology in the design of optical diodes and transistors; the basic properties needed for the design and understanding of new types of engineered materials known as metamaterials; and a consideration of how and why these engineered materials have been formulated in the lab, as well as their applications as negative refractive index materials, as perfect lens, as cloaking devices, and their effects on Cherenkov and other types of radiation. Additionally, the book introduces the new field of plasmonics and reviews its important features. The role of plasmon-polaritons in the scattering and transmission of light by rough surfaces and the enhanced transmission of light by plasmon-polariton supporting surfaces is addressed. The important problems of subwavelength resolution are treated with discussions of applications in a number of scientific fields. The basic principles of near-field optical microscopy are presented with a number of important applications. The basics of atomic cavity physics, photonic entanglement and its relation to some of the basic properties of quantum computing, and the physics associated with the study of optical lattices are presented.
The book describes developments in the crystal growth of bulk II-VI semiconductor materials. A fundamental, systematic, and in-depth study of the physical vapor transport (PVT) growth process is the key to producing high-quality single crystals of semiconductors. As such, the book offers a comprehensive overview of the extensive studies on ZnSe and related II-VI wide bandgap compound semiconductors, such as CdS, CdTe, ZnTe, ZnSeTe and ZnSeS. Further, it shows the detailed steps for the growth of bulk crystals enabling optical devices which can operate in the visible spectrum for applications such as blue light emitting diodes, lasers for optical displays and in the mid-IR wavelength range, high density recording, and military communications. The book then discusses the advantages of crystallization from vapor compared to the conventional melt growth: lower processing temperatures, the purification process associated with PVT, and the improved surface morphology of the grown crystals, as well as the necessary drawbacks to the PVT process, such as the low and inconsistent growth rates and the low yield of single crystals. By presenting in-situ measurements of transport rate, partial pressures and interferometry, as well as visual observations, the book provides detailed insights into in the kinetics during the PVT process. This book is intended for graduate students and professionals in materials science as well as engineers preparing and developing optical devices with semiconductors.
Failure Mechanisms in Semiconductor Devices Second Edition E. Ajith Amerasekera Texas Instruments Inc., Dallas, USA Farid N. Najm University of Illinois at Urbana-Champaign, USA Since the successful first edition of Failure Mechanisms in Semiconductor Devices, semiconductor technology has become increasingly important. The high complexity of today's integrated circuits has engendered a demand for greater component reliability. Reflecting the need for guaranteed performance in consumer applications, this thoroughly updated edition includes more detailed material on reliability modelling and prediction. The book analyses the main failure mechanisms in terms of cause, effects and prevention and explains the mathematics behind reliability analysis. The authors detail methodologies for the identification of failures and describe the approaches for building reliability into semiconductor devices. Their thorough yet accessible text covers the physics of failure mechanisms from the semiconductor die itself to the packaging and interconnections. Incorporating recent advances, this comprehensive survey of semiconductor reliability will be an asset to both engineers and graduate students in the field. |
![]() ![]() You may like...
How to Run a Lathe - Volume I (Edition…
J.J. O'Brien, M W O'brien
Hardcover
R765
Discovery Miles 7 650
|