![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
This book sets out to explain the development of modern electronic
systems and devices from the viewpoint of the semiconductor
materials (germanium, silicon, gallium arsenide and many others)
which made them possible. It covers the scientific understanding of
these materials and its intimate relationship with their technology
and many applications. It began with Michael Faraday, took off in a
big way with the invention of the transistor at Bell Labs in 1947
and is still burgeoning today. It is a story to match any artistic
or engineering achievement of man and this is the first time it has
been presented in a style suited to the non-specialist. It is
written in a lively, non-mathematical style which brings out the
excitement of discovery and the fascinating interplay between the
demands of system pull and technological push. It also looks at the
nature of some of the personal interactions which helped to shape
the modern technological world.
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
This thesis describes the construction of a rotatable spin-polarized electron source and its use in spin- and angle-resolved inverse photoemission to investigate the unoccupied electron states of Tl/Si(111)-(1x1) with special emphasis on their spin texture. Towards more efficient electronics - with the electron spin as information carrier: This motto is the motivation for numerous studies in solid state physics that deal with electron states whose spin degeneracy is lifted by spin-orbit interaction. This thesis addresses the spin-orbit-induced spin textures in momentum space in the surface electronic structure of a prototypical Rashba-type hybrid system: heavy metal thallium on semiconducting silicon. For Tl/Si(111)-(1x1), the thallium adlayer provides surface states with strong spin-orbit interaction and peculiar spin-orbit-induced spin textures: spin rotations and spin chirality in momentum space for unoccupied surface states with giant spin splittings. Almost completely out-of-plane spin-polarized valleys in the vicinity of the Fermi level are identified. As the valley polarization is oppositely oriented at specific points in momentum space, backscattering should be strongly suppressed in this system.
This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.
This book describes the history of and recent developments in cobaltite and the spin-crossover (SC) phenomena. It offers readers an overview of essential research conducted on cobaltite and introduces them to the fundamentals of condensed matter physics research. The book consists of two parts. The first part reviews SC phenomena, covering the fundamental physics of SC phenomena and basic material properties of cobaltite. The second part focuses on recent topics in SC cobaltite, including the optical and dynamical features of cobaltite, thin material fabrication, and thermoelectric properties. The comprehensive coverage and clearly structured topics will especially appeal to newcomers to the field of state-of-the-art research on cobaltite and SC physics.
A strong spin-orbit interaction and Coulomb repulsion featuring strongly correlated d- and f-electron systems lead to various exotic phase transition including unconventional superconductivity and magnetic multipole order. However, their microscopic origins are long standing problem since they could not be explained based on conventional Migdal-Eliashberg theorem. The book focuses on many-body correlation effects beyond conventional theory for the d- and f-electron systems, and theoretically demonstrates the correlations to play significant roles in "mode-coupling" among multiple quantum fluctuations, which is called U-VC here. The following key findings are described in-depth: (i) spin triplet superconductivity caused by U-VC, (ii) being more important U-VC in f-electron systems due to magnetic multipole degrees of freedom induced by a spin-orbit interaction, and (iii) s-wave superconductivity stabilized cooperatively by antiferromagnetic fluctuations and electron-phonon interaction contrary to conventional understanding. The book provides meaningful step for revealing essential roles of many-body effects behind long standing problems in strongly correlated materials.
Technological advances in the field of materials, devices, circuits, and systems began by the discovery of new properties of objects, or the entrepreneurship with the applications of unique or practical concepts for commercial goods. To implement products using these findings and challenges textbook knowledge is usually sufficient. "Semiconductor Technologies in the Era of Electronics" therefore does not aim to look deeper in certain areas but it offers a broad and comprehensive overview of the field to: - Experts of specific knowledge who want to expand the overall
understanding to different areas Aprofound and theoretical approach is therefore used and special cases essential to understanding these important concept are presented."
This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.
An effective and cost efficient protection of electronic system against ESD stress pulses specified by IEC 61000-4-2 is paramount for any system design. This pioneering book presents the collective knowledge of system designers and system testing experts and state-of-the-art techniques for achieving efficient system-level ESD protection, with minimum impact on the system performance. All categories of system failures ranging from 'hard' to 'soft' types are considered to review simulation and tool applications that can be used. The principal focus of System Level ESD Co-Design is defining and establishing the importance of co-design efforts from both IC supplier and system builder perspectives. ESD designers often face challenges in meeting customers' system-level ESD requirements and, therefore, a clear understanding of the techniques presented here will facilitate effective simulation approaches leading to better solutions without compromising system performance. With contributions from Robert Ashton, Jeffrey Dunnihoo, Micheal Hopkins, Pratik Maheshwari, David Pomerenke, Wolfgang Reinprecht, and Matti Usumaki, readers benefit from hands-on experience and in-depth knowledge in topics ranging from ESD design and the physics of system ESD phenomena to tools and techniques to address soft failures and strategies to design ESD-robust systems that include mobile and automotive applications. The first dedicated resource to system-level ESD co-design, this is an essential reference for industry ESD designers, system builders, IC suppliers and customers and also Original Equipment Manufacturers (OEMs). Key features: * Clarifies the concept of system level ESD protection. * Introduces a co-design approach for ESD robust systems. * Details soft and hard ESD fail mechanisms. * Detailed protection strategies for both mobile and automotive applications. * Explains simulation tools and methodology for system level ESD co-design and overviews available test methods and standards. * Highlights economic benefits of system ESD co-design.
Technology computer-aided design, or TCAD, is critical to today's semiconductor technology and anybody working in this industry needs to know something about TCAD. This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D. It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations. Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc.
This book on pressure-induced phase transitions in AB2X4 chalcogenide compounds deals with one important AmBnXp material. The interest in these materials is caused by their properties. The results are discussed for three main groups of structural families: cubic-spinel structures, defective tetragonal structures, and other structures like layered and wurtzite-type modifications. A systematic analysis of the behavior of cubic (spinel), tetragonal (defect chalcopyrites and stannites) and other crystal modifications of AB2X4 compounds under hydrostatic pressure is performed. The behavior of AIIAl2S4, AIIGa2S4, AIIAl2Se4 and AIIGa2Se4 compounds with defective tetragonal structures, compounds with layered and wurtzite structures under hydrostatic pressure and the pressure dependence of the band gap, lattice parameters, interatomic distances, vibrational modes and pressure-induced phase transitions is discussed. Many of these compounds, except oxide spinels, undergo a pressure-induced phase transition towards the rocksalt-type structure. The phase transition is preceded by disorder in the cation sublattice. The dependence of the transition pressure to the rocksalt-type structure as a function of the compound ionicity and the size criterion is analyzed. At high pressures, all ordered-vacancy compounds are found to exhibit a band anticrossing between several conduction bands that leads to a strong decrease of its pressure coefficient and consequently to a strong non-linear pressure dependence of the direct bandgap energy. Theoretical studies of phase transitions in several ordered-vacancy compounds reveal that the existence of ordered vacancies alter the cation-anion bond distances and their compressibilities. The book is written for students, Ph D. students and specialists in materials science, phase transitions and new materials.
X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-situ measurements of the effects of temperature and pressure. Summarizing research in their respective fields, the authors highlight important experimental findings and demonstrate the capabilities and applications of the XAS technique. This book provides a comprehensive review and valuable reference guide for both XAS newcomers and experts involved in semiconductor materials research.
This book presents the latest developments in semiconducting materials and devices, providing up-to-date information on the science, processes, and applications in the field. A wide range of topics are covered, including optoelectronic devices, metal-semiconductor junctions, heterojunctions, MISFETs, LEDs, semiconductor lasers, photodiodes, switching diodes, tunnel diodes, Gunn diodes, solar cells, varactor diodes, IMPATT diodes, and advanced semiconductors. Detailed attention is paid to advanced and futuristic materials. In addition, clear explanations are provided of, for example, electron theories, high-field effects, the Hall effect, transit-time effects, drift and diffusion, breakdown mechanisms, equilibrium and transient conditions, switching, and biasing. The book is designed to meet the needs of undergraduate engineering students and will also be very useful for postgraduate students; it will assist in preparation for examinations at colleges and universities and for other examinations in engineering. Practice questions are therefore presented in both essay and multiple choice format, and many solved examples and unsolved problems are included.
The second Edition of the Handbook of Silicon Wafer Cleaning
Technology is intended to provide knowledge of wet, plasma, and
other surface conditioning techniques used to manufacture
integrated circuits. The integration of the clean processes into
the device manufacturing flow will be presented with respect to
other manufacturing steps such as thermal, implant, etching, and
photolithography processes. The Handbook discusses both wet and
plasma-based cleaning technologies that are used for removing
contamination, particles, residue, and photoresist from wafer
surfaces. Both the process and the equipment are covered. A review
of the current cleaning technologies is included. Also, advanced
cleaning technologies that are under investigation for next
generation processing are covered; including supercritical fluid,
laser, and cryoaerosol cleaning techniques. Additionally
theoretical aspects of the cleaning technologies and how these
processes affect the wafer is discussed such as device damage and
surface roughening will be discussed. The analysis of the wafers
surface is outlined. A discussion of the new materials and the
changes required for the surface conditioning process used for
manufacturing is also included.
Over the last fifty-plus years, the increased complexity and speed of integrated circuits have radically changed our world. Today, semiconductor manufacturing is perhaps the most important segment of the global manufacturing sector. As the semiconductor industry has become more competitive, improving planning and control has become a key factor for business success. This book is devoted to production planning and control problems in semiconductor wafer fabrication facilities. It is the first book that takes a comprehensive look at the role of modeling, analysis, and related information systems for such manufacturing systems. The book provides an operations research- and computer science-based introduction into this important field of semiconductor manufacturing-related research.
Liquid Crystals LCs] are synthetic functional materials par excellence and are to be found in many types of LCDs; LCs self-assemble into ordered, but fluid, supramolecular structures and domains; they can be oriented in large homogeneous monodomains by electric and magnetic fields, Langmuir Blodgett techniques and also by self-orientation on suitable alignment layers; they are also anisotropic with preferred axes of light absorption, emission and charge transport with excellent semiconducting properties; they are soluble in organic solvents and can be deposited as uniform thin layers on device substrates, including plastic, by low-cost deposition processes, such as spin coating and doctor blade techniques; reactive mesogens polymerisable LC monomers] can be photopatterned and fixed in position and orientation as insoluble polymer networks. LCs are increasingly being used as active components in electronic and photonic organic devices, such as Organic Light-Emitting Diodes OLEDs], Organic Field Effect Transistors OFETs], Thin Film Transistors TFTs] and photovoltaic cells PVs]. Such devices on plastic substrates represent a major component of the plastic electronics revolution. The self-assembling properties and supramolecular structures of liquid crystals can be made use of in order to improve the performance of such devices. The relationships between chemical structure, liquid crystalline behaviour and other physical properties, such as charge-transport, photoluminescence and electroluminescence are discussed and explained. For example, high carrier-mobility, polarised emission and enhanced output-coupling are identified as the key advantages of nematic and smectic liquid crystals for electroluminescence. The advantageous use of anisotropic polymer networks formed by the polymerisation of reactive mesogens RMs] in devices with multilayer capability and photopatternability is described. The anisotropic transport and high carrier mobilities of columnar liquid crystals make them promising candidates for photovoltaics and transistors. The issues in the design and processing of liquid crystalline semiconductors for such devcies with improved performance are described. The photonic properties of chiral liquid crystals and their use as mirror-less lasers are also discussed.
This book mainly focuses on the study of the high-temperature superconductor Bi2Sr2CaCu2O8 by vacuum, ultra-violet, laser-based, angle-resolved photoemission spectroscopy (ARPES). A new form of electron coupling has been identified in Bi2212, which occurs in the superconducting state. For the first time, the Bogoliubov quasiparticle dispersion with a clear band back-bending has been observed with two peaks in the momentum distribution curve in the superconducting state at a low temperature. Readers will find useful information about the technique of angle-resolved photoemission and the study of high-temperature superconductors using this technique. Dr. Wentao Zhang received his PhD from the Institute of Physics at the Chinese Academy of Sciences.
This thesis combines quantum electrical engineering with electron spin resonance, with an emphasis on unraveling emerging collective spin phenomena. The presented experiments, with first demonstrations of the cavity protection effect, spectral hole burning and bistability in microwave photonics, cover new ground in the field of hybrid quantum systems. The thesis starts at a basic level, explaining the nature of collective effects in great detail. It develops the concept of Dicke states spin-by-spin, and introduces it to circuit quantum electrodynamics (QED), applying it to a strongly coupled hybrid quantum system studied in a broad regime of several different scenarios. It also provides experimental demonstrations including strong coupling, Rabi oscillations, nonlinear dynamics, the cavity protection effect, spectral hole burning, amplitude bistability and spin echo spectroscopy.
This thesis focuses on two areas - the development of miniature plastic lasers that can be powered by LEDs, and the application of these lasers as highly sensitive sensors for vapours of nitroaromatic explosives (e.g. TNT). Polymer lasers are extremely compact visible lasers; the research described in the thesis is groundbreaking, driving forward the technology and physical understanding to allow these lasers to be routinely pumped by a single high-power LED. A notable advance in the work is the demonstration of nanoimprinted polymer lasers, which exhibit the world's lowest pump threshold densities by two orders of magnitude. The thesis also advances the application of these compact, novel lasers as highly sensitive detectors of explosive vapours, demonstrating that rapid detection can be achieved when microporous polymers are used. This work also demonstrates a prototype CMOS-based microsystem sensor for explosive vapours, exploiting a new detection approach.
This book is based on nearly a decade of materials and electronics research at the leading research institution on the nitride topic in Europe. It is a comprehensive monograph and tutorial that will be of interest to graduate students of electrical engineering, communication engineering, and physics; to materials, device, and circuit engineers in research and industry; to all scientists with a general interest in advanced electronics.
This book provides a comprehensive monograph on gate stacks in semiconductor technology. It covers the major latest developments and basics and will be useful as a reference work for researchers, engineers and graduate students alike. The reader will get a clear view of what has been done so far, what is the state-of-the-art and which are the main challenges ahead before we come any closer to a viable Ge and III-V MOS technology.
This book explores the relationship between electronic correlations, dimensionality, inhomogeneities, and superconductivity in low-dimensional systems by studying single crystals of the quasi-one-dimensional Na2- Mo6Se6, composed of MoSe filaments weakly coupled by Na atoms and subject to intrinsic disorder ( > 0). It shows that the Na2- Mo6Se6 displays strong electronic correlations in its normal state, whereas a superconducting ground state emerges from Anderson localized electrons. Two novel behaviors of the superconducting state are observed: first, a disorder induced enhancement of the superconducting transition temperature; second, a reentrant phase coherence with increasing temperature, magnetic field, and current. It also analyzes the intrinsic properties of Na2- Mo6Se6 are analyzed to offer a thorough understanding of these phenomena. The emergence of superconductivity in such low-dimensional systems provides a fruitful playground to explore electronic order and correlations.
Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. "Quantum Dot Devices" is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source."
This book presents extensive information on the mechanisms of epitaxial growth in III-nitride compounds, drawing on a state-of-the-art computational approach that combines ab initio calculations, empirical interatomic potentials, and Monte Carlo simulations to do so. It discusses important theoretical aspects of surface structures and elemental growth processes during the epitaxial growth of III-nitride compounds. In addition, it discusses advanced fundamental structural and electronic properties, surface structures, fundamental growth processes and novel behavior of thin films in III-nitride semiconductors. As such, it will appeal to all researchers, engineers and graduate students seeking detailed information on crystal growth and its application to III-nitride compounds.
Due to the ever increasing electric fields in scaled CMOS devices, reliability is becoming a showstopper for further scaled technology nodes. Although several groups have already demonstrated functional Si channel devices with aggressively scaled Equivalent Oxide Thickness (EOT) down to 5A, a 10 year reliable device operation cannot be guaranteed anymore due to severe Negative Bias Temperature Instability. This book focuses on the reliability of the novel (Si)Ge channel quantum well pMOSFET technology. This technology is being considered for possible implementation in next CMOS technology nodes, thanks to its benefit in terms of carrier mobility and device threshold voltage tuning. We observe that it also opens a degree of freedom for device reliability optimization. By properly tuning the device gate stack, sufficiently reliable ultra-thin EOT devices with a 10 years lifetime at operating conditions are demonstrated. The extensive experimental datasets collected on a variety of processed 300mm wafers and presented here show the reliability improvement to be process - and architecture-independent and, as such, readily transferable to advanced device architectures as Tri-Gate (finFET) devices. We propose a physical model to understand the intrinsically superior reliability of the MOS system consisting of a Ge-based channel and a SiO2/HfO2 dielectric stack. The improved reliability properties here discussed strongly support (Si)Ge technology as a clear frontrunner for future CMOS technology nodes." |
![]() ![]() You may like...
A Drop of Ladi & My Greek Soul - A New…
Krystina Kalapothakos
Paperback
R1,222
Discovery Miles 12 220
|